• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 18,  comments - 5,  trackbacks - 0

            一、題目描述

            Description

            It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

            The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

            Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

            So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

            Input

            The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

            Output

            One line, consisting of an integer, which gives the minimum number of roads that we need to add.

            Sample Input

            Sample Input 1
            10 12
            1 2
            1 3
            1 4
            2 5
            2 6
            5 6
            3 7
            3 8
            7 8
            4 9
            4 10
            9 10
            Sample Input 2
            3 3
            1 2
            2 3
            1 3

            Sample Output

            Output for Sample Input 1
            2
            Output for Sample Input 2
            0
            


            二、分析
                  用DFS解決問題,詳細算法:割點與橋
            三、代碼

             1#include<iostream>
             2#include<list>
             3using namespace std;
             4int n, r;
             5list<int> g[1001];
             6int num, lab[1001], low[1001];
             7list<pair<intint> > edge;
             8int degree[1001];
             9int parent[1001], rank[1001];
            10void init_set()
            11{
            12    for(int i=1; i<1001; i++)
            13    {
            14        parent[i] = i;
            15        rank[i] = 1;
            16    }

            17}

            18int find(int k)
            19{
            20    if(parent[k] == k) 
            21        return k;
            22    else
            23        return parent[k] = find(parent[k]);
            24}

            25void union_set(int u, int v)
            26{
            27    int pu = find(u), pv = find(v);
            28    if(rank[pu] <= rank[pv])
            29    {
            30        parent[pu] = pv;
            31        rank[pv] += pu;
            32    }

            33    else
            34    {
            35        parent[pv] = pu;
            36        rank[pu] += pv;
            37    }

            38}

            39void dfs(int u, int p)
            40{
            41    lab[u] = low[u] = num++;
            42    list<int>::iterator it;
            43    for(it = g[u].begin(); it != g[u].end(); it++)
            44    {
            45        int v = *it;
            46        if(lab[v] == 0)
            47        {
            48            dfs(v, u);
            49            low[u] = min(low[u], low[v]);
            50            if(low[v] > lab[u])
            51                edge.push_back(make_pair(u, v));
            52            else
            53                union_set(u, v); //u與v能進行縮點
            54        }

            55        else if(v != p)
            56            low[u] = min(low[u], lab[v]);
            57    }

            58}

            59int main()
            60{
            61    scanf("%d%d"&n, &r);
            62    for(int i=1; i<=n; i++)
            63        g[i].clear();
            64    for(int i=1; i<=r; i++)
            65    {
            66        int v1, v2;
            67        scanf("%d%d"&v1, &v2);
            68        g[v1].push_back(v2);
            69        g[v2].push_back(v1);
            70    }

            71    memset(lab, 0sizeof lab);
            72    memset(low, 0x7fsizeof low);
            73    num = 1;
            74    init_set();
            75    dfs(10);
            76    memset(degree, 0sizeof degree);
            77    list<pair<intint> >::iterator it;
            78    int res = 0;
            79    for(it = edge.begin(); it != edge.end(); it++)
            80    {
            81        int u = it->first, v = it->second;
            82        degree[find(u)]++;
            83        if(degree[find(u)] == 1)
            84            res++;
            85        else if(degree[find(u)] == 2)
            86            res--;
            87        degree[find(v)]++;
            88        if(degree[find(v)] == 1)
            89            res++;
            90        else if(degree[find(v)] == 2)
            91            res--;
            92    }

            93    printf("%d\n", (res+1/ 2);
            94}
            posted on 2009-07-05 16:08 Icyflame 閱讀(1421) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告
            国产精品日韩欧美久久综合| 久久永久免费人妻精品下载| 精品一区二区久久| 久久精品草草草| 久久久久亚洲AV无码去区首| 亚洲va国产va天堂va久久| 婷婷久久综合九色综合98| 久久综合给久久狠狠97色| 久久久女人与动物群交毛片| 久久天天躁狠狠躁夜夜2020老熟妇| 久久久久无码精品国产app| 69久久夜色精品国产69| AV无码久久久久不卡蜜桃| 秋霞久久国产精品电影院| 色悠久久久久久久综合网| 四虎国产永久免费久久| 2021国内精品久久久久久影院| 国内精品久久九九国产精品| 四虎影视久久久免费观看| 久久综合综合久久97色| 一本久道久久综合狠狠爱| 久久午夜无码鲁丝片午夜精品| 2021少妇久久久久久久久久| 久久无码AV一区二区三区| 国产精品99久久久久久宅男| 久久久久久久久久久久久久| 久久天天躁狠狠躁夜夜不卡| 国内精品久久久久久久亚洲| 老司机午夜网站国内精品久久久久久久久 | 久久精品人人做人人爽电影蜜月| 久久久久久亚洲精品无码| 国产精品一区二区久久| 久久久久久久人妻无码中文字幕爆| 午夜精品久久久久久| 久久伊人色| 亚洲欧美日韩精品久久亚洲区| 精品国产91久久久久久久a| 国产精品视频久久| 久久久91精品国产一区二区三区 | 亚洲国产另类久久久精品| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 |