• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 18,  comments - 5,  trackbacks - 0

            一、題目描述

            Description

            It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

            The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

            Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

            So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

            Input

            The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

            Output

            One line, consisting of an integer, which gives the minimum number of roads that we need to add.

            Sample Input

            Sample Input 1
            10 12
            1 2
            1 3
            1 4
            2 5
            2 6
            5 6
            3 7
            3 8
            7 8
            4 9
            4 10
            9 10
            Sample Input 2
            3 3
            1 2
            2 3
            1 3

            Sample Output

            Output for Sample Input 1
            2
            Output for Sample Input 2
            0
            


            二、分析
                  用DFS解決問題,詳細算法:割點與橋
            三、代碼

             1#include<iostream>
             2#include<list>
             3using namespace std;
             4int n, r;
             5list<int> g[1001];
             6int num, lab[1001], low[1001];
             7list<pair<intint> > edge;
             8int degree[1001];
             9int parent[1001], rank[1001];
            10void init_set()
            11{
            12    for(int i=1; i<1001; i++)
            13    {
            14        parent[i] = i;
            15        rank[i] = 1;
            16    }

            17}

            18int find(int k)
            19{
            20    if(parent[k] == k) 
            21        return k;
            22    else
            23        return parent[k] = find(parent[k]);
            24}

            25void union_set(int u, int v)
            26{
            27    int pu = find(u), pv = find(v);
            28    if(rank[pu] <= rank[pv])
            29    {
            30        parent[pu] = pv;
            31        rank[pv] += pu;
            32    }

            33    else
            34    {
            35        parent[pv] = pu;
            36        rank[pu] += pv;
            37    }

            38}

            39void dfs(int u, int p)
            40{
            41    lab[u] = low[u] = num++;
            42    list<int>::iterator it;
            43    for(it = g[u].begin(); it != g[u].end(); it++)
            44    {
            45        int v = *it;
            46        if(lab[v] == 0)
            47        {
            48            dfs(v, u);
            49            low[u] = min(low[u], low[v]);
            50            if(low[v] > lab[u])
            51                edge.push_back(make_pair(u, v));
            52            else
            53                union_set(u, v); //u與v能進行縮點
            54        }

            55        else if(v != p)
            56            low[u] = min(low[u], lab[v]);
            57    }

            58}

            59int main()
            60{
            61    scanf("%d%d"&n, &r);
            62    for(int i=1; i<=n; i++)
            63        g[i].clear();
            64    for(int i=1; i<=r; i++)
            65    {
            66        int v1, v2;
            67        scanf("%d%d"&v1, &v2);
            68        g[v1].push_back(v2);
            69        g[v2].push_back(v1);
            70    }

            71    memset(lab, 0sizeof lab);
            72    memset(low, 0x7fsizeof low);
            73    num = 1;
            74    init_set();
            75    dfs(10);
            76    memset(degree, 0sizeof degree);
            77    list<pair<intint> >::iterator it;
            78    int res = 0;
            79    for(it = edge.begin(); it != edge.end(); it++)
            80    {
            81        int u = it->first, v = it->second;
            82        degree[find(u)]++;
            83        if(degree[find(u)] == 1)
            84            res++;
            85        else if(degree[find(u)] == 2)
            86            res--;
            87        degree[find(v)]++;
            88        if(degree[find(v)] == 1)
            89            res++;
            90        else if(degree[find(v)] == 2)
            91            res--;
            92    }

            93    printf("%d\n", (res+1/ 2);
            94}
            posted on 2009-07-05 16:08 Icyflame 閱讀(1421) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告
            久久国产亚洲精品麻豆| 精品欧美一区二区三区久久久| 久久久中文字幕日本| 久久国产精品一区| A级毛片无码久久精品免费| 人妻无码αv中文字幕久久| AV无码久久久久不卡蜜桃| 成人亚洲欧美久久久久| 欧美一区二区久久精品| 91精品国产高清91久久久久久| 久久精品人人做人人爽电影| 热综合一本伊人久久精品| 久久综合狠狠综合久久| 日韩十八禁一区二区久久| 久久99精品久久久久久久不卡| 久久99精品久久久久久水蜜桃| 久久国产欧美日韩精品免费| 国产99精品久久| 亚洲午夜久久久久久噜噜噜| 久久97精品久久久久久久不卡| 久久综合久久美利坚合众国| 91精品国产高清久久久久久91 | 国产激情久久久久影院小草 | 2021久久精品国产99国产精品| 人妻无码精品久久亚瑟影视| 精品久久久久久国产| 亚洲国产精品久久久天堂 | 久久精品二区| 国产视频久久| 国产日韩欧美久久| 99久久精品费精品国产| 国产精品一久久香蕉国产线看观看| 精品国产日韩久久亚洲| 亚洲AV伊人久久青青草原| 久久97久久97精品免视看| 亚洲国产成人久久精品动漫| 国产一级做a爰片久久毛片| 久久久久人妻精品一区二区三区| 久久亚洲春色中文字幕久久久| 伊人色综合久久天天人手人婷 | 久久久久久极精品久久久|