• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            投其所好,堅持不懈,快樂人生

            生活的天平本不平衡,只有通過努力改變其偏向~

            C++博客 首頁 新隨筆 聯(lián)系 聚合 管理
              17 Posts :: 2 Stories :: 3 Comments :: 0 Trackbacks

            一、預備知識—程序的內(nèi)存分配
                一個由c/C++編譯的程序占用的內(nèi)存分為以下幾個部分
                1、棧區(qū)(stack)— 由編譯器自動分配釋放 ,存放函數(shù)的參數(shù)值,局部變量的值等。其操作方式類似于數(shù)據(jù)結(jié)構(gòu)中的棧。
                2、堆區(qū)(heap) — 一般由程序員分配釋放, 若程序員不釋放,程序結(jié)束時可能由OS回收 。注意它與數(shù)據(jù)結(jié)構(gòu)中的堆是兩回事,分配方式倒是類似于鏈表,呵呵。
                3、全局區(qū)(靜態(tài)區(qū))(static)—,全局變量和靜態(tài)變量的存儲是放在一塊的,初始化的全局變量和靜態(tài)變量在一塊區(qū)域, 未初始化的全局變量和未初始化的靜態(tài)變量在相鄰的另一塊區(qū)域。 - 程序結(jié)束后有系統(tǒng)釋放
                4、文字常量區(qū)—常量字符串就是放在這里的。 程序結(jié)束后由系統(tǒng)釋放
                5、程序代碼區(qū)—存放函數(shù)體的二進制代碼。


            例子程序
            這是一個前輩寫的,非常詳細
            //main.cpp
            int a = 0; 全局初始化區(qū)
            char *p1; 全局未初始化區(qū)
            main()
            {
            int b; 棧
            char s[] = "abc"; 棧
            char *p2; 棧
            char *p3 = "123456"; 123456\0在常量區(qū),p3在棧上。
            static int c =0; 全局(靜態(tài))初始化區(qū)
            p1 = (char *)malloc(10);
            p2 = (char *)malloc(20);
            分配得來得10和20字節(jié)的區(qū)域就在堆區(qū)。
            strcpy(p1, "123456"); 123456\0放在常量區(qū),編譯器可能會將它與p3所指向的"123456"優(yōu)化成一個地方。
            }


            二、堆和棧的理論知識

            2.1申請方式
            stack:
            由系統(tǒng)自動分配。 例如,聲明在函數(shù)中一個局部變量 int b; 系統(tǒng)自動在棧中為b開辟空間
            heap:
            需要程序員自己申請,并指明大小,在c中malloc函數(shù)
            如p1 = (char *)malloc(10);
            在C++中用new運算符
            如p2 = (char *)malloc(10);
            但是注意p1、p2本身是在棧中的。

            2.2申請后系統(tǒng)的響應(yīng)
            棧:只要棧的剩余空間大于所申請空間,系統(tǒng)將為程序提供內(nèi)存,否則將報異常提示棧溢出。
            堆:首先應(yīng)該知道操作系統(tǒng)有一個記錄空閑內(nèi)存地址的鏈表,當系統(tǒng)收到程序的申請時,
            會遍歷該鏈表,尋找第一個空間大于所申請空間的堆結(jié)點,然后將該結(jié)點從空閑結(jié)點鏈表中刪除,并將該結(jié)點的空間分配給程序,另外,對于大多數(shù)系統(tǒng),會在這塊內(nèi)存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內(nèi)存空間。另外,由于找到的堆結(jié)點的大小不一定正好等于申請的大小,系統(tǒng)會自動的將多余的那部分重新放入空閑鏈表中。

            2.3申請大小的限制
            棧:在Windows下,棧是向低地址擴展的數(shù)據(jù)結(jié)構(gòu),是一塊連續(xù)的內(nèi)存的區(qū)域。這句話的意思是棧頂?shù)牡刂泛蜅5淖畲笕萘渴窍到y(tǒng)預先規(guī)定好的,在WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數(shù)),如果申請的空間超過棧的剩余空間時,將提示overflow。因此,能從棧獲得的空間較小。
            堆:堆是向高地址擴展的數(shù)據(jù)結(jié)構(gòu),是不連續(xù)的內(nèi)存區(qū)域。這是由于系統(tǒng)是用鏈表來存儲的空閑內(nèi)存地址的,自然是不連續(xù)的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限于計算機系統(tǒng)中有效的虛擬內(nèi)存。由此可見,堆獲得的空間比較靈活,也比較大。


            2.4申請效率的比較
            棧由系統(tǒng)自動分配,速度較快。但程序員是無法控制的。
            堆是由new分配的內(nèi)存,一般速度比較慢,而且容易產(chǎn)生內(nèi)存碎片,不過用起來最方便.
            另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內(nèi)存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內(nèi)存,雖然用起來最不方便。但是速度快,也最靈活。

            2.5堆和棧中的存儲內(nèi)容
            棧: 在函數(shù)調(diào)用時,第一個進棧的是主函數(shù)中后的下一條指令(函數(shù)調(diào)用語句的下一條可執(zhí)行語句)的地址,然后是函數(shù)的各個參數(shù),在大多數(shù)的C編譯器中,參數(shù)是由右往左入棧的,然后是函數(shù)中的局部變量。注意靜態(tài)變量是不入棧的。
            當本次函數(shù)調(diào)用結(jié)束后,局部變量先出棧,然后是參數(shù),最后棧頂指針指向最開始存的地址,也就是主函數(shù)中的下一條指令,程序由該點繼續(xù)運行。
            堆:一般是在堆的頭部用一個字節(jié)存放堆的大小。堆中的具體內(nèi)容有程序員安排。

            2.6存取效率的比較
            char s1[] = "aaaaaaaaaaaaaaa";
            char *s2 = "bbbbbbbbbbbbbbbbb";
            aaaaaaaaaaa是在運行時刻賦值的;
            而bbbbbbbbbbb是在編譯時就確定的;
            但是,在以后的存取中,在棧上的數(shù)組比指針所指向的字符串(例如堆)快。
            比如:
            #i nclude
            void main()
            {
            char a = 1;
            char c[] = "1234567890";
            char *p ="1234567890";
            a = c[1];
            a = p[1];
            return;
            }
            對應(yīng)的匯編代碼
            10: a = c[1];
            00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
            0040106A 88 4D FC mov byte ptr [ebp-4],cl
            11: a = p[1];
            0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
            00401070 8A 42 01 mov al,byte ptr [edx+1]
            00401073 88 45 FC mov byte ptr [ebp-4],al
            第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據(jù)edx讀取字符,顯然慢了。

            2.7小結(jié)
            堆和棧的區(qū)別可以用如下的比喻來看出:
            使用棧就象我們?nèi)ワ堭^里吃飯,只管點菜(發(fā)出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。
            使用堆就象是自己動手做喜歡吃的菜肴,比較麻煩,但是比較符合自己的口味,而且自由度大。



            windows進程中的內(nèi)存結(jié)構(gòu)


            在閱讀本文之前,如果你連
            堆棧是什么多不知道的話,請先閱讀文章后面的基礎(chǔ)知識

            接觸過
            編程的人都知道,高級語言都能通過變量名來訪問內(nèi)存中的數(shù)據(jù)。那么這些變量在內(nèi)存中是如何存放的呢?程序又是如何使用這些變量的呢?下面就會對此進行深入的討論。下文中的C語言代碼如沒有特別聲明,默認都使用VC編譯的release版。

            首先,來了解一下 C 語言的變量是如何在內(nèi)存分部的。C 語言有全局變量(Global)、本地變量(Local),靜態(tài)變量(Static)、寄存器變量(Regeister)。每種變量都有不同的分配方式。先來看下面這段代碼:

            #i nclude <stdio.h>

            int g1=0, g2=0, g3=0;

            int main()
            {
            static int s1=0, s2=0, s3=0;
            int v1=0, v2=0, v3=0;

            //打印出各個變量的內(nèi)存地址

            printf("0x%08x\n",&v1); //打印各本地變量的內(nèi)存地址
            printf("0x%08x\n",&v2);
            printf("0x%08x\n\n",&v3);
            printf("0x%08x\n",&g1); //打印各全局變量的內(nèi)存地址
            printf("0x%08x\n",&g2);
            printf("0x%08x\n\n",&g3);
            printf("0x%08x\n",&s1); //打印各靜態(tài)變量的內(nèi)存地址
            printf("0x%08x\n",&s2);
            printf("0x%08x\n\n",&s3);
            return 0;
            }

            編譯后的執(zhí)行結(jié)果是:

            0x0012ff78
            0x0012ff7c
            0x0012ff80

            0x004068d0
            0x004068d4
            0x004068d8

            0x004068dc
            0x004068e0
            0x004068e4

            輸出的結(jié)果就是變量的內(nèi)存地址。其中v1,v2,v3是本地變量,g1,g2,g3是全局變量,s1,s2,s3是靜態(tài)變量。你可以看到這些變量在內(nèi)存是連續(xù)分布的,但是本地變量和全局變量分配的內(nèi)存地址差了十萬八千里,而全局變量和靜態(tài)變量分配的內(nèi)存是連續(xù)的。這是因為本地變量和全局/靜態(tài)變量是分配在不同類型的內(nèi)存區(qū)域中的結(jié)果。對于一個進程的內(nèi)存空間而言,可以在邏輯上分成3個部份:代碼區(qū),靜態(tài)數(shù)據(jù)區(qū)和動態(tài)數(shù)據(jù)區(qū)。動態(tài)數(shù)據(jù)區(qū)一般就是“堆棧”。“棧(stack)”和“堆(heap)”是兩種不同的動態(tài)數(shù)據(jù)區(qū),棧是一種線性結(jié)構(gòu),堆是一種鏈式結(jié)構(gòu)。進程的每個線程都有私有的“棧”,所以每個線程雖然代碼一樣,但本地變量的數(shù)據(jù)都是互不干擾。一個堆棧可以通過“基地址”和“棧頂”地址來描述。全局變量和靜態(tài)變量分配在靜態(tài)數(shù)據(jù)區(qū),本地變量分配在動態(tài)數(shù)據(jù)區(qū),即堆棧中。程序通過堆棧的基地址和偏移量來訪問本地變量。


            ├———————┤低端內(nèi)存區(qū)域
            │ …… │
            ├———————┤
            │ 動態(tài)數(shù)據(jù)區(qū) │
            ├———————┤
            │ …… │
            ├———————┤
            │ 代碼區(qū) │
            ├———————┤
            │ 靜態(tài)數(shù)據(jù)區(qū) │
            ├———————┤
            │ …… │
            ├———————┤高端內(nèi)存區(qū)域


            堆棧是一個先進后出的數(shù)據(jù)結(jié)構(gòu),棧頂?shù)刂房偸切∮诘扔跅5幕刂贰N覀兛梢韵攘私庖幌潞瘮?shù)調(diào)用的過程,以便對堆棧在程序中的作用有更深入的了解。不同的語言有不同的函數(shù)調(diào)用規(guī)定,這些因素有參數(shù)的壓入規(guī)則和堆棧的平衡。windows API的調(diào)用規(guī)則和ANSI C的函數(shù)調(diào)用規(guī)則是不一樣的,前者由被調(diào)函數(shù)調(diào)整堆棧,后者由調(diào)用者調(diào)整堆棧。兩者通過“__stdcall”和“__cdecl”前綴區(qū)分。先看下面這段代碼:

            #i nclude <stdio.h>

            void __stdcall func(int param1,int param2,int param3)
            {
            int var1=param1;
            int var2=param2;
            int var3=param3;
            printf("0x%08x\n",?m1); //打印出各個變量的內(nèi)存地址
            printf("0x%08x\n",?m2);
            printf("0x%08x\n\n",?m3);
            printf("0x%08x\n",&var1);
            printf("0x%08x\n",&var2);
            printf("0x%08x\n\n",&var3);
            return;
            }

            int main()
            {
            func(1,2,3);
            return 0;
            }

            編譯后的執(zhí)行結(jié)果是:

            0x0012ff78
            0x0012ff7c
            0x0012ff80

            0x0012ff68
            0x0012ff6c
            0x0012ff70


            ├———————┤<—函數(shù)執(zhí)行時的棧頂(ESP)、低端內(nèi)存區(qū)域
            │ …… │
            ├———————┤
            │ var 1 │
            ├———————┤
            │ var 2 │
            ├———————┤
            │ var 3 │
            ├———————┤
            │ RET │
            ├———————┤<—“__cdecl”函數(shù)返回后的棧頂(ESP)
            │ parameter 1 │
            ├———————┤
            │ parameter 2 │
            ├———————┤
            │ parameter 3 │
            ├———————┤<—“__stdcall”函數(shù)返回后的棧頂(ESP)
            │ …… │
            ├———————┤<—棧底(基地址 EBP)、高端內(nèi)存區(qū)域


            上圖就是函數(shù)調(diào)用過程中堆棧的樣子了。首先,三個參數(shù)以從又到左的次序壓入堆棧,先壓“param3”,再壓“param2”,最后壓入“param1”;然后壓入函數(shù)的返回地址(RET),接著跳轉(zhuǎn)到函數(shù)地址接著執(zhí)行(這里要補充一點,介紹UNIX下的緩沖溢出原理的文章中都提到在壓入RET后,繼續(xù)壓入當前EBP,然后用當前ESP代替EBP。然而,有一篇介紹windows下函數(shù)調(diào)用的文章中說,在windows下的函數(shù)調(diào)用也有這一步驟,但根據(jù)我的實際調(diào)試,并未發(fā)現(xiàn)這一步,這還可以從param3和var1之間只有4字節(jié)的間隙這點看出來);第三步,將棧頂(ESP)減去一個數(shù),為本地變量分配內(nèi)存空間,上例中是減去12字節(jié)(ESP=ESP-3*4,每個int變量占用4個字節(jié));接著就初始化本地變量的內(nèi)存空間。由于“__stdcall”調(diào)用由被調(diào)函數(shù)調(diào)整堆棧,所以在函數(shù)返回前要恢復堆棧,先回收本地變量占用的內(nèi)存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前壓入?yún)?shù)占用的內(nèi)存(ESP=ESP+3*4),繼續(xù)執(zhí)行調(diào)用者的代碼。參見下列匯編代碼:

            ;--------------func 函數(shù)的匯編代碼-------------------

            :00401000 83EC0C sub esp, 0000000C //創(chuàng)建本地變量的內(nèi)存空間
            :00401003 8B442410 mov eax, dword ptr [esp+10]
            :00401007 8B4C2414 mov ecx, dword ptr [esp+14]
            :0040100B 8B542418 mov edx, dword ptr [esp+18]
            :0040100F 89442400 mov dword ptr [esp], eax
            :00401013 8D442410 lea eax, dword ptr [esp+10]
            :00401017 894C2404 mov dword ptr [esp+04], ecx

            ……………………(省略若干代碼)

            :00401075 83C43C add esp, 0000003C ;恢復堆棧,回收本地變量的內(nèi)存空間
            :00401078 C3 ret 000C ;函數(shù)返回,恢復參數(shù)占用的內(nèi)存空間
            ;如果是“__cdecl”的話,這里是“ret”,堆棧將由調(diào)用者恢復

            ;-------------------函數(shù)結(jié)束-------------------------


            ;--------------主程序調(diào)用func函數(shù)的代碼--------------

            :00401080 6A03 push 00000003 //壓入?yún)?shù)param3
            :00401082 6A02 push 00000002 //壓入?yún)?shù)param2
            :00401084 6A01 push 00000001 //壓入?yún)?shù)param1
            :00401086 E875FFFFFF call 00401000 //調(diào)用func函數(shù)
            ;如果是“__cdecl”的話,將在這里恢復堆棧,“add esp, 0000000C”

            聰明的讀者看到這里,差不多就明白緩沖溢出的原理了。先來看下面的代碼:

            #i nclude <stdio.h>
            #i nclude <string.h>

            void __stdcall func()
            {
            char lpBuff[8]="\0";
            strcat(lpBuff,"AAAAAAAAAAA");
            return;
            }

            int main()
            {
            func();
            return 0;
            }

            編譯后執(zhí)行一下回怎么樣?哈,“"0x00414141"指令引用的"0x00000000"內(nèi)存。該內(nèi)存不能為"read"。”,“非法操作”嘍!"41"就是"A"的16進制的ASCII碼了,那明顯就是strcat這句出的問題了。"lpBuff"的大小只有8字節(jié),算進結(jié)尾的\0,那strcat最多只能寫入7個"A",但程序?qū)嶋H寫入了11個"A"外加1個\0。再來看看上面那幅圖,多出來的4個字節(jié)正好覆蓋了RET的所在的內(nèi)存空間,導致函數(shù)返回到一個錯誤的內(nèi)存地址,執(zhí)行了錯誤的指令。如果能精心構(gòu)造這個字符串,使它分成三部分,前一部份僅僅是填充的無意義數(shù)據(jù)以達到溢出的目的,接著是一個覆蓋RET的數(shù)據(jù),緊接著是一段shellcode,那只要著個RET地址能指向這段shellcode的第一個指令,那函數(shù)返回時就能執(zhí)行shellcode了。但是軟件的不同版本和不同的運行環(huán)境都可能影響這段shellcode在內(nèi)存中的位置,那么要構(gòu)造這個RET是十分困難的。一般都在RET和shellcode之間填充大量的NOP指令,使得exploit有更強的通用性。


            ├———————┤<—低端內(nèi)存區(qū)域
            │ …… │
            ├———————┤<—由exploit填入數(shù)據(jù)的開始
            │ │
            │ buffer │<—填入無用的數(shù)據(jù)
            │ │
            ├———————┤
            │ RET │<—指向shellcode,或NOP指令的范圍
            ├———————┤
            │ NOP │
            │ …… │<—填入的NOP指令,是RET可指向的范圍
            │ NOP │
            ├———————┤
            │ │
            │ shellcode │
            │ │
            ├———————┤<—由exploit填入數(shù)據(jù)的結(jié)束
            │ …… │
            ├———————┤<—高端內(nèi)存區(qū)域


            windows下的動態(tài)數(shù)據(jù)除了可存放在棧中,還可以存放在堆中。了解C++的朋友都知道,C++可以使用new關(guān)鍵字來動態(tài)分配內(nèi)存。來看下面的C++代碼:

            #i nclude <stdio.h>
            #i nclude <iostream.h>
            #i nclude <windows.h>

            void func()
            {
            char *buffer=new char[128];
            char bufflocal[128];
            static char buffstatic[128];
            printf("0x%08x\n",buffer); //打印堆中變量的內(nèi)存地址
            printf("0x%08x\n",bufflocal); //打印本地變量的內(nèi)存地址
            printf("0x%08x\n",buffstatic); //打印靜態(tài)變量的內(nèi)存地址
            }

            void main()
            {
            func();
            return;
            }

            程序執(zhí)行結(jié)果為:

            0x004107d0
            0x0012ff04
            0x004068c0

            可以發(fā)現(xiàn)用new關(guān)鍵字分配的內(nèi)存即不在棧中,也不在靜態(tài)數(shù)據(jù)區(qū)。VC編譯器是通過windows下的“堆(heap)”來實現(xiàn)new關(guān)鍵字的內(nèi)存動態(tài)分配。在講“堆”之前,先來了解一下和“堆”有關(guān)的幾個API函數(shù):

            HeapAlloc 在堆中申請內(nèi)存空間
            HeapCreate 創(chuàng)建一個新的堆對象
            HeapDestroy 銷毀一個堆對象
            HeapFree 釋放申請的內(nèi)存
            HeapWalk 枚舉堆對象的所有內(nèi)存塊
            GetProcessHeap 取得進程的默認堆對象
            GetProcessHeaps 取得進程所有的堆對象
            LocalAlloc
            GlobalAlloc

            當進程初始化時,系統(tǒng)會自動為進程創(chuàng)建一個默認堆,這個堆默認所占內(nèi)存的大小為1M。堆對象由系統(tǒng)進行管理,它在內(nèi)存中以鏈式結(jié)構(gòu)存在。通過下面的代碼可以通過堆動態(tài)申請內(nèi)存空間:

            HANDLE hHeap=GetProcessHeap();
            char *buff=HeapAlloc(hHeap,0,8);

            其中hHeap是堆對象的句柄,buff是指向申請的內(nèi)存空間的地址。那這個hHeap究竟是什么呢?它的值有什么意義嗎?看看下面這段代碼吧:

            #pragma comment(linker,"/entry:main") //定義程序的入口
            #i nclude <windows.h>

            _CRTIMP int (__cdecl *printf)(const char *, ...); //定義STL函數(shù)printf
            /*---------------------------------------------------------------------------
            寫到這里,我們順便來復習一下前面所講的知識:
            (*注)printf函數(shù)是C語言的標準函數(shù)庫中函數(shù),VC的標準函數(shù)庫由msvcrt.dll模塊實現(xiàn)。
            由函數(shù)定義可見,printf的參數(shù)個數(shù)是可變的,函數(shù)內(nèi)部無法預先知道調(diào)用者壓入的參數(shù)個數(shù),函數(shù)只能通過分析第一個參數(shù)字符串的格式來獲得壓入?yún)?shù)的信息,由于這里參數(shù)的個數(shù)是動態(tài)的,所以必須由調(diào)用者來平衡堆棧,這里便使用了__cdecl調(diào)用規(guī)則。BTW,Windows系統(tǒng)的API函數(shù)基本上是__stdcall調(diào)用形式,只有一個API例外,那就是wsprintf,它使用__cdecl調(diào)用規(guī)則,同printf函數(shù)一樣,這是由于它的參數(shù)個數(shù)是可變的緣故。
            ---------------------------------------------------------------------------*/
            void main()
            {
            HANDLE hHeap=GetProcessHeap();
            char *buff=HeapAlloc(hHeap,0,0x10);
            char *buff2=HeapAlloc(hHeap,0,0x10);
            HMODULE hMsvcrt=LoadLibrary("msvcrt.dll");
            printf=(void *)GetProcAddress(hMsvcrt,"printf");
            printf("0x%08x\n",hHeap);
            printf("0x%08x\n",buff);
            printf("0x%08x\n\n",buff2);
            }

            執(zhí)行結(jié)果為:

            0x00130000
            0x00133100
            0x00133118

            hHeap的值怎么和那個buff的值那么接近呢?其實hHeap這個句柄就是指向HEAP首部的地址。在進程的用戶區(qū)存著一個叫PEB(進程環(huán)境塊)的結(jié)構(gòu),這個結(jié)構(gòu)中存放著一些有關(guān)進程的重要信息,其中在PEB首地址偏移0x18處存放的ProcessHeap就是進程默認堆的地址,而偏移0x90處存放了指向進程所有堆的地址列表的指針。windows有很多API都使用進程的默認堆來存放動態(tài)數(shù)據(jù),如windows 2000下的所有ANSI版本的函數(shù)都是在默認堆中申請內(nèi)存來轉(zhuǎn)換ANSI字符串到Unicode字符串的。對一個堆的訪問是順序進行的,同一時刻只能有一個線程訪問堆中的數(shù)據(jù),當多個線程同時有訪問要求時,只能排隊等待,這樣便造成程序執(zhí)行效率下降。

            最后來說說內(nèi)存中的數(shù)據(jù)對齊。所位數(shù)據(jù)對齊,是指數(shù)據(jù)所在的內(nèi)存地址必須是該數(shù)據(jù)長度的整數(shù)倍,DWORD數(shù)據(jù)的內(nèi)存起始地址能被4除盡,WORD數(shù)據(jù)的內(nèi)存起始地址能被2除盡,x86 CPU能直接訪問對齊的數(shù)據(jù),當他試圖訪問一個未對齊的數(shù)據(jù)時,會在內(nèi)部進行一系列的調(diào)整,這些調(diào)整對于程序來說是透明的,但是會降低運行速度,所以編譯器在編譯程序時會盡量保證數(shù)據(jù)對齊。同樣一段代碼,我們來看看用VC、Dev-C++和lcc三個不同編譯器編譯出來的程序的執(zhí)行結(jié)果:

            #i nclude <stdio.h>

            int main()
            {
            int a;
            char b;
            int c;
            printf("0x%08x\n",&a);
            printf("0x%08x\n",&b);
            printf("0x%08x\n",&c);
            return 0;
            }

            這是用VC編譯后的執(zhí)行結(jié)果:
            0x0012ff7c
            0x0012ff7b
            0x0012ff80
            變量在內(nèi)存中的順序:b(1字節(jié))-a(4字節(jié))-c(4字節(jié))。

            這是用Dev-C++編譯后的執(zhí)行結(jié)果:
            0x0022ff7c
            0x0022ff7b
            0x0022ff74
            變量在內(nèi)存中的順序:c(4字節(jié))-中間相隔3字節(jié)-b(占1字節(jié))-a(4字節(jié))。

            這是用lcc編譯后的執(zhí)行結(jié)果:
            0x0012ff6c
            0x0012ff6b
            0x0012ff64
            變量在內(nèi)存中的順序:同上。

            三個編譯器都做到了數(shù)據(jù)對齊,但是后兩個編譯器顯然沒VC“聰明”,讓一個char占了4字節(jié),浪費內(nèi)存哦。


            基礎(chǔ)知識:
            堆棧是一種簡單的數(shù)據(jù)結(jié)構(gòu),是一種只允許在其一端進行插入或刪除的線性表。允許插入或刪除操作的一端稱為棧頂,另一端稱為棧底,對堆棧的插入和刪除操作被稱為入棧和出棧。有一組CPU指令可以實現(xiàn)對進程的內(nèi)存實現(xiàn)堆棧訪問。其中,POP指令實現(xiàn)出棧操作,PUSH指令實現(xiàn)入棧操作。CPU的ESP寄存器存放當前線程的棧頂指針,EBP寄存器中保存當前線程的棧底指針。CPU的EIP寄存器存放下一個CPU指令存放的內(nèi)存地址,當CPU執(zhí)行完當前的指令后,從EIP寄存器中讀取下一條指令的內(nèi)存地址,然后繼續(xù)執(zhí)行。

             

            堆(Heap)棧(Stack)

            1、內(nèi)存分配方面:

                堆:一般由程序員分配釋放, 若程序員不釋放,程序結(jié)束時可能由OS回收 。注意它與數(shù)據(jù)結(jié)構(gòu)中的堆是兩回事,分配方式是類似于鏈表。可能用到的關(guān)鍵字如下:newmallocdeletefree等等。

                棧:由編譯器(Compiler)自動分配釋放,存放函數(shù)的參數(shù)值局部變量的值等。其操作方式類似于數(shù)據(jù)結(jié)構(gòu)中的棧。

            2、申請方式方面:

                堆:需要程序員自己申請,并指明大小。在c中malloc函數(shù)如p1 = (char *)malloc(10);在C++中用new運算符,但是注意p1、p2本身是在棧中的。因為他們還是可以認為是局部變量。

                棧:由系統(tǒng)自動分配。 例如,聲明在函數(shù)中一個局部變量 int b;系統(tǒng)自動在棧中為b開辟空間。

            3、系統(tǒng)響應(yīng)方面:

                堆:操作系統(tǒng)有一個記錄空閑內(nèi)存地址的鏈表,當系統(tǒng)收到程序的申請時,會遍歷該鏈表,尋找第一個空間大于所申請空間的堆結(jié)點,然后將該結(jié)點從空閑結(jié)點鏈表中刪除,并將該結(jié)點的空間分配給程序,另外,對于大多數(shù)系統(tǒng),會在這塊內(nèi)存空間中的首地址處記錄本次分配的大小,這樣代碼中的delete語句才能正確的釋放本內(nèi)存空間。另外由于找到的堆結(jié)點的大小不一定正好等于申請的大小,系統(tǒng)會自動的將多余的那部分重新放入空閑鏈表中。

                棧:只要棧的剩余空間大于所申請空間,系統(tǒng)將為程序提供內(nèi)存,否則將報異常提示棧溢出。

            4、大小限制方面:

                堆:是向高地址擴展的數(shù)據(jù)結(jié)構(gòu),是不連續(xù)的內(nèi)存區(qū)域。這是由于系統(tǒng)是用鏈表來存儲的空閑內(nèi)存地址的,自然是不連續(xù)的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限于計算機系統(tǒng)中有效的虛擬內(nèi)存。由此可見,堆獲得的空間比較靈活,也比較大。

                棧:在Windows下, 棧是向低地址擴展的數(shù)據(jù)結(jié)構(gòu),是一塊連續(xù)的內(nèi)存的區(qū)域。這句話的意思是棧頂?shù)牡刂泛蜅5淖畲笕萘渴?strong>系統(tǒng)預先規(guī)定好的,在WINDOWS下,棧的大小是固定的(是一個編譯時就確定的常數(shù)),如果申請的空間超過棧的剩余空間時,將提示overflow。因此,能從棧獲得的空間較小。

            5、效率方面:

                堆:是由new分配的內(nèi)存,一般速度比較慢,而且容易產(chǎn)生內(nèi)存碎片,不過用起來最方便,另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內(nèi)存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內(nèi)存,雖然用起來最不方便。但是速度快,也最靈活。

                棧:由系統(tǒng)自動分配,速度較快。但程序員是無法控制的。

            6、存放內(nèi)容方面:

                堆:一般是在堆的頭部用一個字節(jié)存放堆的大小。堆中的具體內(nèi)容有程序員安排。

                棧:在函數(shù)調(diào)用時第一個進棧的是主函數(shù)中后的下一條指令(函數(shù)調(diào)用語句的下一條可執(zhí)行語句)的地址然后是函數(shù)的各個參數(shù),在大多數(shù)的C編譯器中,參數(shù)是由右往左入棧,然后是函數(shù)中的局部變量。 注意: 靜態(tài)變量是不入棧的。當本次函數(shù)調(diào)用結(jié)束后,局部變量先出棧,然后是參數(shù),最后棧頂指針指向最開始存的地址,也就是主函數(shù)中的下一條指令,程序由該點繼續(xù)運行

            7、存取效率方面:

                堆:char *s1 = "Hellow Word";是在編譯時就確定的;

                棧:char s1[] = "Hellow Word"; 是在運行時賦值的;用數(shù)組比用指針速度要快一些,因為指針在底層匯編中需要用edx寄存器中轉(zhuǎn)一下,而數(shù)組在棧上直接讀取。

            posted on 2008-04-08 15:15 snail 閱讀(243) 評論(0)  編輯 收藏 引用 所屬分類: C++
            MM131亚洲国产美女久久| 国产福利电影一区二区三区久久老子无码午夜伦不 | 国产福利电影一区二区三区,免费久久久久久久精 | 91麻豆国产精品91久久久| 久久久久精品国产亚洲AV无码| 日韩久久久久久中文人妻 | 亚洲国产精品久久久久网站 | 精品久久久久久99人妻| 亚洲а∨天堂久久精品| 亚洲αv久久久噜噜噜噜噜| 久久夜色精品国产亚洲| 老男人久久青草av高清| 18岁日韩内射颜射午夜久久成人| 国产精品99久久久精品无码| 情人伊人久久综合亚洲| 亚洲色大成网站www久久九| 久久久网中文字幕| 国产精品一久久香蕉产线看| 亚洲精品无码专区久久同性男| 国产精品美女久久久久网| 99久久香蕉国产线看观香| 久久国产视频99电影| 久久99毛片免费观看不卡| 国产精品久久久久jk制服| 亚洲精品视频久久久| 欧美亚洲国产精品久久久久| 久久久久18| 久久e热在这里只有国产中文精品99 | 久久久精品人妻无码专区不卡| 国产成人精品免费久久久久| 亚洲色大成网站www久久九| 久久综合亚洲色HEZYO社区| 亚洲国产精品无码久久青草| 久久久久综合国产欧美一区二区 | 亚洲精品高清一二区久久| 久久久久香蕉视频| 久久久久亚洲AV无码专区桃色| 久久国产香蕉视频| 天天影视色香欲综合久久| 久久综合日本熟妇| 国内精品伊人久久久久777|