• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 16,comments - 0,trackbacks - 0

            # include <stdio.h>

            typedef long long int LL;

            /***************************************/
            LL Min(LL x, LL y)
            {
            ??????????????? return x < y ? x : y;
            }
            LL Max(LL x, LL y)
            {
            ??????????????? return x > y ? x : y;
            }
            LL gcd(LL x, LL y)
            {
            ??????????????? if (!y) return x;
            ??????????????? return gcd(y, x%y);
            }
            LL ex_gcd(LL a,LL b,LL &x,LL &y)
            {
            ??????????????? if(b==0)
            ??????????????? {
            ??????????????????????????????? x=1;
            ??????????????????????????????? y=0;
            ??????????????????????????????? return a;
            ??????????????? }
            ??????????????? LL g,t;
            ??????????????? g=ex_gcd(b,a%b,x,y);
            ??????????????? t=x;
            ??????????????? x=y;
            ??????????????? y=t-a/b*y;
            ??????????????? return g;
            }
            LL niyuan(LL b,LL p)
            {
            ??????????????? LL x,y;
            ??????????????? ex_gcd(b,p,x,y);
            ??????????????? return x=(x%p+p)%p;
            }
            /***************************************/
            struct frac
            {
            ??????????????? LL n, d;
            } ;
            LL A, B, C, D;
            LL LLabs(LL x)
            {
            ??????????????? return x>0 ? x:-x;
            }
            void slim(frac &x)
            {
            ??????????????? LL tmp = LLabs(gcd(x.d, x.n));
            ??????????????? x.d /= tmp;
            ??????????????? x.n /= tmp;
            }
            frac dif(frac x, frac y)
            {
            ??????????????? frac z;
            ??????????????? z.d = x.d * y.d;
            ??????????????? z.n = LLabs(x.n*y.d-x.d*y.n);
            ??????????????? slim(z);
            ??????????????? return z;
            }
            int cmp(frac x, frac y)
            {
            ??????????????? return x.n*y.d - x.d*y.n>0 ? 1:0;
            }
            frac cal(frac x, frac y, frac BA)
            {
            ??????????????? return cmp(dif(x, BA), dif(y, BA)) ? y:x;
            }
            void solve(void)
            {
            ??????????????? frac BA;
            ??????????????? BA.n = A, BA.d = B;
            ??????????????? LL n1 = niyuan(B, A);
            ??????????????? if (n1 == 0) n1 = A;
            ??????????????? LL d1 = (B*n1-1) / A;
            ??????????????? LL d2 = niyuan(A, B);
            ??????????????? if (d2 == 0) d2 = B;
            ??????????????? LL n2 = (A*d2-1) / B;
            ??????????????? frac a, b;
            ??????????????? a.n = n1, a.d = d1;
            ??????????????? b.n = n2, b.d = d2;
            ??????????????? slim(a), slim(b);
            ??????????????? frac ans = cal(a, b, BA);
            ??????????????? printf("%lld/%lld\n", ans.n, ans.d);
            }
            /***************************************/
            int main()
            {
            ??????????????? freopen("in.txt", "r", stdin);

            ??????????????? int T;
            ??????????????? scanf("%d", &T);
            ??????????????? while (T--)
            ??????????????? {
            ??????????????????????????????? scanf("%lld/%lld", &A, &B);
            ??????????????????????????????? LL tmp = gcd(A, B);
            ??????????????????????????????? if (tmp != 1)
            ??????????????????????????????? {
            ??????????????????????????????????????????????? printf("%lld/%lld\n", A/tmp, B/tmp);
            ??????????????????????????????? }
            ??????????????????????????????? else solve();
            ??????????????? }

            ??????????????? return 0;
            }

            Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large.

            Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:

            1. 0 < C < D < B, and
            2. the error | A/B - C/D| is the minimum over all possible values of C and D, and
            3. D is the smallest such positive integer.

            Input

            The input starts with an integer K ( 1$ \le$K$ \le$1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by `/' such that:

            1. B is a 32 bit integer strictly greater than 2, and
            2. 0 < A < B

            Output

            For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by `/'.

            Sample Input

            3
            1/4
            2/3
            13/21
            

            Sample Output

            1/3
            1/2
            8/13
            
            posted on 2012-09-15 17:26 yajunw 閱讀(300) 評論(0)  編輯 收藏 引用
            久久人人爽人人爽人人片AV麻烦| 色狠狠久久AV五月综合| 久久久久久国产精品无码下载| 国产—久久香蕉国产线看观看| 久久精品国产亚洲5555| 久久精品国产亚洲AV久| 99精品久久精品一区二区| 色综合久久久久综合99| 国内精品人妻无码久久久影院| 99久久精品这里只有精品 | 久久福利青草精品资源站| 国产精品热久久无码av| 日韩人妻无码精品久久久不卡| 久久91精品综合国产首页| 久久精品国产亚洲AV高清热| 久久久久人妻一区精品 | 偷偷做久久久久网站| 精品国产青草久久久久福利| 久久亚洲美女精品国产精品| 久久中文字幕精品| 久久精品18| 93精91精品国产综合久久香蕉 | 亚洲国产精品综合久久网络| 国产精品视频久久久| 久久精品免费一区二区| 中文国产成人精品久久亚洲精品AⅤ无码精品| 欧美黑人激情性久久| 三级三级久久三级久久 | 久久影院久久香蕉国产线看观看| 久久久久免费看成人影片| 久久精品国产AV一区二区三区 | 欧美久久综合九色综合| 国产一区二区精品久久凹凸| www.久久热.com| 青青青青久久精品国产| 久久99国产精品久久99果冻传媒| 色综合久久无码中文字幕| 人人狠狠综合久久88成人| 人妻无码久久一区二区三区免费| 新狼窝色AV性久久久久久| 久久青青草原精品国产|