• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 16,comments - 0,trackbacks - 0

            # include <stdio.h>

            typedef long long int LL;

            /***************************************/
            LL Min(LL x, LL y)
            {
            ??????????????? return x < y ? x : y;
            }
            LL Max(LL x, LL y)
            {
            ??????????????? return x > y ? x : y;
            }
            LL gcd(LL x, LL y)
            {
            ??????????????? if (!y) return x;
            ??????????????? return gcd(y, x%y);
            }
            LL ex_gcd(LL a,LL b,LL &x,LL &y)
            {
            ??????????????? if(b==0)
            ??????????????? {
            ??????????????????????????????? x=1;
            ??????????????????????????????? y=0;
            ??????????????????????????????? return a;
            ??????????????? }
            ??????????????? LL g,t;
            ??????????????? g=ex_gcd(b,a%b,x,y);
            ??????????????? t=x;
            ??????????????? x=y;
            ??????????????? y=t-a/b*y;
            ??????????????? return g;
            }
            LL niyuan(LL b,LL p)
            {
            ??????????????? LL x,y;
            ??????????????? ex_gcd(b,p,x,y);
            ??????????????? return x=(x%p+p)%p;
            }
            /***************************************/
            struct frac
            {
            ??????????????? LL n, d;
            } ;
            LL A, B, C, D;
            LL LLabs(LL x)
            {
            ??????????????? return x>0 ? x:-x;
            }
            void slim(frac &x)
            {
            ??????????????? LL tmp = LLabs(gcd(x.d, x.n));
            ??????????????? x.d /= tmp;
            ??????????????? x.n /= tmp;
            }
            frac dif(frac x, frac y)
            {
            ??????????????? frac z;
            ??????????????? z.d = x.d * y.d;
            ??????????????? z.n = LLabs(x.n*y.d-x.d*y.n);
            ??????????????? slim(z);
            ??????????????? return z;
            }
            int cmp(frac x, frac y)
            {
            ??????????????? return x.n*y.d - x.d*y.n>0 ? 1:0;
            }
            frac cal(frac x, frac y, frac BA)
            {
            ??????????????? return cmp(dif(x, BA), dif(y, BA)) ? y:x;
            }
            void solve(void)
            {
            ??????????????? frac BA;
            ??????????????? BA.n = A, BA.d = B;
            ??????????????? LL n1 = niyuan(B, A);
            ??????????????? if (n1 == 0) n1 = A;
            ??????????????? LL d1 = (B*n1-1) / A;
            ??????????????? LL d2 = niyuan(A, B);
            ??????????????? if (d2 == 0) d2 = B;
            ??????????????? LL n2 = (A*d2-1) / B;
            ??????????????? frac a, b;
            ??????????????? a.n = n1, a.d = d1;
            ??????????????? b.n = n2, b.d = d2;
            ??????????????? slim(a), slim(b);
            ??????????????? frac ans = cal(a, b, BA);
            ??????????????? printf("%lld/%lld\n", ans.n, ans.d);
            }
            /***************************************/
            int main()
            {
            ??????????????? freopen("in.txt", "r", stdin);

            ??????????????? int T;
            ??????????????? scanf("%d", &T);
            ??????????????? while (T--)
            ??????????????? {
            ??????????????????????????????? scanf("%lld/%lld", &A, &B);
            ??????????????????????????????? LL tmp = gcd(A, B);
            ??????????????????????????????? if (tmp != 1)
            ??????????????????????????????? {
            ??????????????????????????????????????????????? printf("%lld/%lld\n", A/tmp, B/tmp);
            ??????????????????????????????? }
            ??????????????????????????????? else solve();
            ??????????????? }

            ??????????????? return 0;
            }

            Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large.

            Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:

            1. 0 < C < D < B, and
            2. the error | A/B - C/D| is the minimum over all possible values of C and D, and
            3. D is the smallest such positive integer.

            Input

            The input starts with an integer K ( 1$ \le$K$ \le$1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by `/' such that:

            1. B is a 32 bit integer strictly greater than 2, and
            2. 0 < A < B

            Output

            For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by `/'.

            Sample Input

            3
            1/4
            2/3
            13/21
            

            Sample Output

            1/3
            1/2
            8/13
            
            posted on 2012-09-15 17:26 yajunw 閱讀(299) 評論(0)  編輯 收藏 引用
            精品久久久久久久无码| 久久亚洲欧美国产精品 | 久久精品免费全国观看国产| 精品一久久香蕉国产线看播放| 青青久久精品国产免费看| 久久久久久久久久久久中文字幕| 免费国产99久久久香蕉| 国产精品久久久久蜜芽| 久久99国产精品一区二区| 国产精品久久久久蜜芽| 国内精品伊人久久久久影院对白 | 精品视频久久久久| 国产成年无码久久久久毛片| 国产精品美女久久久久av爽| 18岁日韩内射颜射午夜久久成人| 久久国产精品成人免费| 午夜天堂精品久久久久| 亚洲精品97久久中文字幕无码| 国产精品女同久久久久电影院| 久久久亚洲欧洲日产国码是AV| 国产精品美女久久久久AV福利| 国产精品99精品久久免费| 三级三级久久三级久久| 污污内射久久一区二区欧美日韩 | 国产成人香蕉久久久久| 久久国产精品无码HDAV| 久久精品一本到99热免费| 中文字幕久久波多野结衣av| 2021国内久久精品| 少妇无套内谢久久久久| 久久久久亚洲av综合波多野结衣 | 久久精品国产清自在天天线| 99久久免费只有精品国产| 久久精品一区二区三区不卡| 久久久久久综合一区中文字幕| 国产综合久久久久久鬼色| 久久国产欧美日韩精品| 久久婷婷久久一区二区三区| 久久精品成人免费网站| 精品久久久久久99人妻| 亚洲国产日韩欧美综合久久|