• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ArcTan

            dfs
            隨筆 - 16, 文章 - 117, 評論 - 6, 引用 - 0
            數據加載中……

            2008 Hangzhou 網絡賽-D hdu2421 (數論)

            Problem Description:
            Xiaoming has just come up with a new way for encryption, by calculating the key from a publicly viewable number in the following way:
            Let the public key N = AB, where 1 <= A, B <= 1000000, and a0, a1, a2, …, ak-1 be the factors of N, then the private key M is calculated by summing the cube of number of factors of all ais. For example, if A is 2 and B is 3, then N = AB = 8, a0 = 1, a1 = 2, a2 = 4, a3 = 8, so the value of M is 1 + 8 + 27 + 64 = 100.
            However, contrary to what Xiaoming believes, this encryption scheme is extremely vulnerable. Can you write a program to prove it?

            Input
            There are multiple test cases in the input file. Each test case starts with two integers A, and B. (1 <= A, B <= 1000000). Input ends with End-of-File.
            Note: There are about 50000 test cases in the input file. Please optimize your algorithm to ensure that it can finish within the given time limit.
            Output
            For each test case, output the value of M (mod 10007) in the format as indicated in the sample output.
             

            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.

            讀不懂題意就是傻逼啊!!!!!!!
            這個題目是要求每個因子的因子的個數然后再立方和啊啊啊啊
            8的因子有1 2 4 8,它們的因子數有1 2 3 4啊,立方和為1+8+27+64=100啊。
            轉化為算術基本定理:
            N=A^B
            求N的每個因子的因子數:
                  任何一個大于1的數可以分解成 N=a1^p1*a2^p2*a3^p3*...*an^pn, N的約數總數為(p1+1)*(p2+1)*...*(pn+1),
                  (0,1,...,p1)(0,1,...,p2)...(0,1,...,pn)
                   不難發現(1^3+2^3+...+(p1+1)^3) (1^3+2^3+...+(p2+1)^3)...(1^3+2^3+...+(pn+1)^3)即為所求。


            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #define maxn 1000005
            int p[1015];
            int  b[1015];
            int tot;

            int eular()
            {
                memset(b,
            0,sizeof(b));
                
            int i=2;tot=0;
                
            while (i<1010)
                {
                    
            while (b[i])    i++;
                    p[tot
            ++]=i;
                    
            int j=i;
                    
            while (j<1010)
                    {
                        b[j]
            =1;
                        j
            +=i;
                    }
                }
                tot
            --;
                
            return 0;
            }

            int main()
            {
                
            long long A,B;
                
            int t=0;
                eular();
                
            while (scanf("%I64d%I64d",&A,&B)==2)
                {
                    printf(
            "Case %d: ",++t);
                    B
            %=10007;
                    
            long long ans=1;
                    
            long long t,tt;
                    
            int i=0;
                    
            while (i<tot && A>1)
                    {
                        t
            =0;
                        
            while (A%p[i]==0)
                            t
            ++,A/=p[i];
                        tt
            =(t*B+1)*(t*B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt) % 10007;
                        i
            ++;
                    }
                    
            if (A>1)
                    {
                        tt
            =(B+1)*(B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt)%10007;
                    }
                    printf(
            "%I64d\n",ans);
                }
                
            return 0;
            }




            posted on 2012-07-19 15:09 wangs 閱讀(224) 評論(0)  編輯 收藏 引用 所屬分類: ACM-數學

            麻豆亚洲AV永久无码精品久久| 91久久九九无码成人网站| 一本色综合久久| 欧美一区二区三区久久综| 久久久久久a亚洲欧洲aⅴ| 精品国产一区二区三区久久蜜臀| 久久激情五月丁香伊人| 久久亚洲日韩看片无码| 日本精品久久久中文字幕| 亚洲国产综合久久天堂| 国产婷婷成人久久Av免费高清| 久久国产成人午夜AV影院| 久久精品中文无码资源站| 国产一区二区三精品久久久无广告 | 精品久久久久久久中文字幕| 午夜精品久久久久久影视riav| 99久久国产精品免费一区二区| 97久久精品人人澡人人爽| 亚洲精品tv久久久久久久久| 精品久久久久久无码人妻热| av无码久久久久不卡免费网站| 97视频久久久| 亚洲精品国产综合久久一线| 成人久久久观看免费毛片| 久久永久免费人妻精品下载| 亚洲国产精品一区二区三区久久| 精品久久777| 精品国产福利久久久| 精品综合久久久久久888蜜芽| 狠狠色婷婷久久一区二区| 亚洲一区精品伊人久久伊人 | 久久国产亚洲精品无码| 老男人久久青草av高清| 国内精品欧美久久精品| 久久精品无码一区二区三区免费| 久久免费小视频| 久久99精品国产麻豆婷婷| 99久久国产综合精品网成人影院 | 精品久久久一二三区| 一本久久免费视频| 久久精品国产2020|