• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ArcTan

            dfs
            隨筆 - 16, 文章 - 117, 評論 - 6, 引用 - 0
            數(shù)據(jù)加載中……

            2008 Hangzhou 網(wǎng)絡(luò)賽-D hdu2421 (數(shù)論)

            Problem Description:
            Xiaoming has just come up with a new way for encryption, by calculating the key from a publicly viewable number in the following way:
            Let the public key N = AB, where 1 <= A, B <= 1000000, and a0, a1, a2, …, ak-1 be the factors of N, then the private key M is calculated by summing the cube of number of factors of all ais. For example, if A is 2 and B is 3, then N = AB = 8, a0 = 1, a1 = 2, a2 = 4, a3 = 8, so the value of M is 1 + 8 + 27 + 64 = 100.
            However, contrary to what Xiaoming believes, this encryption scheme is extremely vulnerable. Can you write a program to prove it?

            Input
            There are multiple test cases in the input file. Each test case starts with two integers A, and B. (1 <= A, B <= 1000000). Input ends with End-of-File.
            Note: There are about 50000 test cases in the input file. Please optimize your algorithm to ensure that it can finish within the given time limit.
            Output
            For each test case, output the value of M (mod 10007) in the format as indicated in the sample output.
             

            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.

            讀不懂題意就是傻逼啊!!!!!!!
            這個題目是要求每個因子的因子的個數(shù)然后再立方和啊啊啊啊
            8的因子有1 2 4 8,它們的因子數(shù)有1 2 3 4啊,立方和為1+8+27+64=100啊。
            轉(zhuǎn)化為算術(shù)基本定理:
            N=A^B
            求N的每個因子的因子數(shù):
                  任何一個大于1的數(shù)可以分解成 N=a1^p1*a2^p2*a3^p3*...*an^pn, N的約數(shù)總數(shù)為(p1+1)*(p2+1)*...*(pn+1),
                  (0,1,...,p1)(0,1,...,p2)...(0,1,...,pn)
                   不難發(fā)現(xiàn)(1^3+2^3+...+(p1+1)^3) (1^3+2^3+...+(p2+1)^3)...(1^3+2^3+...+(pn+1)^3)即為所求。


            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #define maxn 1000005
            int p[1015];
            int  b[1015];
            int tot;

            int eular()
            {
                memset(b,
            0,sizeof(b));
                
            int i=2;tot=0;
                
            while (i<1010)
                {
                    
            while (b[i])    i++;
                    p[tot
            ++]=i;
                    
            int j=i;
                    
            while (j<1010)
                    {
                        b[j]
            =1;
                        j
            +=i;
                    }
                }
                tot
            --;
                
            return 0;
            }

            int main()
            {
                
            long long A,B;
                
            int t=0;
                eular();
                
            while (scanf("%I64d%I64d",&A,&B)==2)
                {
                    printf(
            "Case %d: ",++t);
                    B
            %=10007;
                    
            long long ans=1;
                    
            long long t,tt;
                    
            int i=0;
                    
            while (i<tot && A>1)
                    {
                        t
            =0;
                        
            while (A%p[i]==0)
                            t
            ++,A/=p[i];
                        tt
            =(t*B+1)*(t*B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt) % 10007;
                        i
            ++;
                    }
                    
            if (A>1)
                    {
                        tt
            =(B+1)*(B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt)%10007;
                    }
                    printf(
            "%I64d\n",ans);
                }
                
            return 0;
            }




            posted on 2012-07-19 15:09 wangs 閱讀(223) 評論(0)  編輯 收藏 引用 所屬分類: ACM-數(shù)學(xué)

            青青草原综合久久| 精品久久久久一区二区三区 | 无码人妻精品一区二区三区久久 | 久久AV高清无码| 91麻精品国产91久久久久| 欧美一级久久久久久久大片| 一本色综合久久| 青青草原综合久久大伊人精品| 欧美成a人片免费看久久| 亚洲国产欧洲综合997久久| 久久91精品国产91久久小草| 久久久久久亚洲精品不卡 | 色综合久久久久网| 国产精品乱码久久久久久软件| 久久久久亚洲AV片无码下载蜜桃 | 国产亚洲色婷婷久久99精品| 久久se精品一区二区影院| 一本久久a久久精品vr综合| 久久AAAA片一区二区| 色综合久久中文字幕无码| 欧美日韩成人精品久久久免费看| 国内精品久久久久久野外| 久久这里只有精品首页| 天天综合久久一二三区| 久久久久人妻一区精品| 伊人色综合九久久天天蜜桃| 7777久久亚洲中文字幕| 国内精品人妻无码久久久影院导航 | 99精品久久久久久久婷婷| AV色综合久久天堂AV色综合在| 久久久无码精品亚洲日韩蜜臀浪潮 | 久久精品国产99久久久| 亚洲国产精品成人久久蜜臀 | 91精品国产综合久久香蕉 | 久久夜色精品国产噜噜亚洲a| 久久久综合九色合综国产| avtt天堂网久久精品| AV色综合久久天堂AV色综合在| 99re久久精品国产首页2020| 久久棈精品久久久久久噜噜| 久久狠狠高潮亚洲精品|