• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            Tim's Programming Space  
            Tim's Programming Space
            日歷
            <2010年7月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567
            統計
            • 隨筆 - 20
            • 文章 - 1
            • 評論 - 40
            • 引用 - 0

            導航

            常用鏈接

            留言簿(3)

            隨筆檔案

            文章檔案

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

             

            The Alliances

            In a fantasy world, there is a large island of a rectangular shape. The sides of the island happen to be exactly R miles and C miles long, and the whole island is divided into a grid of R\times C areas. Some of the areas are uninhabited, and the rest are occupied by villages of fantasy beings: elves, humans, dwarves, and hobbits. Each area contains at most one village. Two villages are considered neighbours if their areas share a side.

            Recently, the villages became terrified of the Great Evil. In order to feel safer, each village has decided to form military alliances with some of its neighbours. An alliance always involves two neighbouring villages, and it is a mutual and symmetric agreement.

            Depending on the species living in the village, the inhabitants will not feel safe unless a specific configuration of alliances is formed:

            • The elves feel confident, and therefore need exactly one alliance.
            • Human villages require alliances with exactly two neighbours.
              Moreover, leaving two opposite sides of the village exposed is bad for tactical reasons. Therefore the two allied neighbours cannot be located on opposite sides of the village.
            • Dwarves require alliances with exactly three neighbours.
            • Hobbits are extremely scared, and therefore need to have alliances with all four of their neighbours.

            In other words, except for humans each village requires a particular number of alliances, but does not care which neighbours will be its allies. For humans there is an additional restriction: the allied neighbours must not be on opposite sides of the village.

            The conditions must be fulfilled irrespective of the position of the village on the map. For example, a dwarf village desires three alliances. If it is located on the coast, this means that it must have alliances with all three neighbours. If there is a dwarf village in a corner of the island, its inhabitants will never feel safe.

            Task specification

            For a given island description, your task is to decide whether it is possible to form alliances so that all inhabitants of the island will feel safe. In case of a positive answer, your task is also to suggest one viable configuration of alliances. In case of multiple solutions, choose an arbitrary one.

            Input specification

            The first line of the input contains two integers R and C specifying the size of the island. The following R lines encode a description of the island. Each line consists of C space-separated numbers between 0 and 4:

            • 0 means uninhabited area,
            • 1 means an elf village,
            • 2 means a human village,
            • 3 means a dwarf village.
            • 4 means a hobbit village,

            (Note that the number in the input always corresponds to the number of desired alliances for that village.)

            Constraints

            In all test cases assume that 1 \leq R,C \leq 70.

            In test cases worth a total of 55 points we have \min(R,C) \leq 10. Out of these, in test cases worth 15 points R\cdot C \leq 20.

            Another batch of test cases worth 10 points contains maps with only uninhabited areas and human villages. (This batch is not included in the test cases worth 55 points.)

            Output specification

            If there is no solution, output a single line with the string "Impossible!" (quotes for clarity). Otherwise, output one valid map of alliances in the following format.

            Each area should appear in the output as a matrix of 3 \times 3 characters. If the area is uninhabited, the corresponding section of the output will be filled with . (dot) symbols. If the area has a village there should be a a symbol O (uppercase letter O) in the middle representing the village itself, and there should be symbols X (uppercase letter X) representing a configuration of its allies. The rest of the 3\times 3 matrix should be filled with . (dot) symbols.

            For each village type, all possible layouts of alliances are shown in the image below.

            Examples

            input:

            3 4
            2 3 2 0
            3 4 3 0
            2 3 3 1

            output:

            ............
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXOXXO.
            ............

            input:

            1 2
            2 1

            output:

            Impossible!


            這是 CEOI2010 當場唯一會做的。。。
            題目大意是:告訴一個70*70的格子里面每個點的度,每個格子只能往四周的四個格子連邊,邊是雙向的,對于度為2的點所連的兩條邊不能在一條直線上,求出一組方案。
            ============================
            如果沒有對度為2的點連邊的限制的話,就把格子黑白染色,建二分圖,相鄰的點連容量為1的邊,黑點連源,白點連匯,容量都為要求的度。流之即可。
            加上對度為2的點連邊的限制,這樣的方法出現的問題在于沒法處理這個問題了。
            但我們發現,對于度為2的點的限制可以化為:橫向或者縱向都有且只有一條邊,于是把度為2的點拆成橫的和豎的兩個點就行了。

            /*
             * $File: alliances.cpp
             * $Date: Thu Jul 15 11:18:14 2010 +0800
             * $Prob: CEOI 2010 The Alliances
             * $Author: Tim
             * $Addr: 
            http://riesky.sk/ceoi2010/problem.php?contest=CEOI%202010%20Day%201&problem=alliances
             
            */

            #include 
            <cstdio>
            #include 
            <cstring>
            #include 
            <cstdlib>

            #define MAXL 71
            #define MAXN (MAXL * MAXL * 2 + 10)
            #define MAXM (MAXN * 4 + MAXN + MAXN) * 2


            #define INFINITE 0x3f3f3f3f
            #define MIN(a, b) ((a) < (b) ? (a) : (b))
            #define OP(x) ((((x) - 1) ^ 1) + 1)

            #define OP_DIR(x) ((x + 2) & 3)

            using namespace std;

            const int fx[] = {010-1};
            const int fy[] = {10-10};
            const int UP    = 3,
                      DOWN    
            = 1,
                      LEFT    
            = 2,
                      RIGHT 
            = 0;


            int map[MAXL + 1][MAXL + 1];
            int n, m;
            void Init()
            {
                scanf(
            "%d%d"&n, &m);
                
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        scanf(
            "%d"&map[i][j]);
            }

            int N = 2, S = 0, T = 1;
            int id[MAXL + 1][MAXL + 1][2];
            int ID(int x, int y, int flag)
            {
                
            if (id[x][y][flag])
                    
            return id[x][y][flag];
                
            return id[x][y][flag] = N ++;
            }

            int edge_id[MAXL + 1][MAXL + 1][4];
            int Count = 0;
            int begin[MAXN + 1], end[MAXM + 1], next[MAXM + 1], c[MAXM + 1];
            void AddEdge(int a, int b, int f)
            {
                Count 
            ++;
                next[Count] 
            = begin[a];
                begin[a] 
            = Count;
                end[Count] 
            = b;
                c[Count] 
            = f;

                Count 
            ++;
                next[Count] 
            = begin[b];
                begin[b] 
            = Count;
                end[Count] 
            = a;
                c[Count] 
            = 0;
            }

            int tot_flow[2];
            void BuildGraph()
            {
                    
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        
            if (map[i][j])
                        {
                            
            if ((i + j) & 1)
                            {
                                
            for (int k = 0; k < 4; k ++)
                                {
                                    
            int x = i + fx[k], y = j + fy[k];
                                    
            if (x >= 0 && x < n && y >= 0 && y < m && map[x][y])
                                    {
                                        AddEdge(ID(i, j, (map[i][j] 
            == 2 ? (k & 1) : 0)), 
                                                ID(x, y, (map[x][y] 
            == 2 ? (k & 1) : 0)),
                                                
            1);
                                        edge_id[i][j][k] 
            = edge_id[x][y][OP_DIR(k)] = Count;
                                    }
                                }
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(S, ID(i, j, 
            0), 1);
                                    AddEdge(S, ID(i, j, 
            1), 1);
                                }
                                
            else
                                    AddEdge(S, ID(i, j, 
            0), map[i][j]);
                            }
                            
            else
                            {
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(ID(i, j, 
            0), T, 1);
                                    AddEdge(ID(i, j, 
            1), T, 1);
                                }
                                
            else
                                    AddEdge(ID(i, j, 
            0), T, map[i][j]);
                            }
                            tot_flow[(i 
            + j) & 1+= map[i][j];
                        }
            }
            int cur[MAXN + 1], d[MAXN + 1], pre[MAXN + 1], a[MAXN + 1], cnt[MAXN + 1];
            int sap()
            {
                
            int flow = 0, now, tmp, u;
                a[u 
            = S] = INFINITE;
                cnt[
            0= N;
                memcpy(cur, begin, 
            sizeof(begin[0]) * N);
                
            while (d[S] < N)
                {
                    
            for (now = cur[u]; now; now = next[now])
                        
            if (c[now] && d[u] == d[end[now]] + 1)
                            
            break;
                    
            if (now)
                    {
                        tmp 
            = end[now];
                        pre[tmp] 
            = cur[u] = now;
                        a[tmp] 
            = MIN(a[u], c[now]);
                        
            if ((u = tmp) == T)
                        {
                            flow 
            += (tmp = a[T]);
                            
            do
                            {
                                c[pre[u]] 
            -= tmp;
                                c[OP(pre[u])] 
            += tmp;
                                u 
            = end[OP(pre[u])];
                            }
                            
            while (u != S);
                            a[S] 
            = INFINITE;
                        }
                    }
                    
            else
                    {
                        
            if ((--cnt[d[u]]) == 0)
                            
            break;
                        cur[u] 
            = begin[u], d[u] = N;
                        
            for (now = begin[u]; now; now = next[now])
                            
            if (c[now] && d[u] > d[end[now]] + 1)
                                d[u] 
            = d[end[now]] + 1, cur[u] = now;
                        cnt[d[u]] 
            ++;
                        
            if (u != S)
                            u 
            = end[OP(pre[u])];
                    }
                }
                
            return flow;
            }

            bool ans;
            void Solve()
            {
                BuildGraph();
                ans 
            = true;
                
            if (tot_flow[0!= tot_flow[1])
                    ans 
            = false;
                
            else if (sap() != tot_flow[0])
                    ans 
            = false;
            }

            void Print()
            {
                
            if (!ans)
                    puts(
            "Impossible!");
                
            else
                {
                    
            for (int i = 0; i < n; i ++)
                    {
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][UP]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c", c[edge_id[i][j][LEFT]] ? 'X' : '.');
                            printf(
            "%c", map[i][j] ? 'O' : '.');
                            printf(
            "%c", c[edge_id[i][j][RIGHT]] ? 'X' : '.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][DOWN]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                    }
                }
            }

            int main()
            {
                freopen(
            "alliances.in""r", stdin);
                freopen(
            "alliances.out""w", stdout);
                Init();
                Solve();
                Print();
                
            return 0;
            }

            posted on 2010-07-15 11:19 TimTopCoder 閱讀(1857) 評論(1)  編輯 收藏 引用
            評論:
             
            Copyright © TimTopCoder Powered by: 博客園 模板提供:滬江博客
            久久国产精品99久久久久久老狼 | 99久久超碰中文字幕伊人| 国产精品综合久久第一页| 久久青青草视频| 国产成人精品综合久久久| 久久久久久久久久久久中文字幕| 久久国产精品免费一区二区三区| 久久青草国产手机看片福利盒子| 欧洲人妻丰满av无码久久不卡| 久久久久亚洲AV成人网人人网站| 污污内射久久一区二区欧美日韩| 精品久久久无码中文字幕| 国产成人综合久久精品尤物| 91精品国产综合久久四虎久久无码一级 | 日韩欧美亚洲综合久久 | 91麻豆国产精品91久久久| 欧美成a人片免费看久久| 国产午夜电影久久| 久久国产乱子伦精品免费午夜| 一级做a爰片久久毛片16| 久久国产精品成人免费| 国产精品无码久久四虎| 久久亚洲国产精品五月天婷| 无码国内精品久久人妻麻豆按摩| 亚洲国产成人精品91久久久 | 青青青国产精品国产精品久久久久 | 久久精品成人国产午夜| 91精品国产91久久久久久蜜臀| 国产精品无码久久四虎| 久久久久久国产a免费观看黄色大片| 久久久久久久久66精品片| 欧美大香线蕉线伊人久久| 国产亚洲欧美成人久久片| 国产日韩久久久精品影院首页| 久久精品国产亚洲精品| 中文字幕亚洲综合久久菠萝蜜| 久久夜色精品国产亚洲| 精品久久久无码人妻中文字幕豆芽 | 亚洲精品无码久久千人斩| 久久久久国产精品熟女影院| 99久久婷婷国产一区二区|