http://acm.pku.edu.cn/JudgeOnline/problem?id=1739
基于連通性狀態(tài)壓縮的動態(tài)規(guī)劃(名字真長- -!)其實不算太難,以前都被它嚇住了。
hyf教了一次后,印象極其深刻,回路、路徑條數(shù)啥的從此再也不用向美國(霧)進(jìn)口了。
簡要的說:f[i][j][k]表示在(i,j)這個格子的時候,m+1個插頭的情況是k,然后根據(jù)(i,j)左邊和上邊插頭(括號?)的情況進(jìn)行連接,然后轉(zhuǎn)移到下一個格子。一個合法的狀態(tài)是一個括號表達(dá)式,有左括號,右括號和空格,且左右括號匹配。一個左括號和一個相應(yīng)的右括號表示這兩個地方的路徑是連在一起的。轉(zhuǎn)移的時候分情況討論。
處理的時候先把所有合法的狀態(tài)都dfs出來,轉(zhuǎn)移的時候就方便了。。
PS:居然驚喜地進(jìn)入了status第一頁?!。。。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define MAXN 8
#define BLANK 0
#define LEFT 1
#define RIGHT 2
#define MAXSTATE 174420
#define MAXSTATEAMOUNT 835
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define ll long long
using namespace std;
int n,m;
char map[MAXN+1][MAXN+1];
int nState = 0;
int State[MAXSTATEAMOUNT+1];
int id[MAXSTATE+1];
int Tx, Ty, FinalState;
ll f[MAXN+1][MAXN+1][MAXSTATEAMOUNT+1];
ll ans;
void Reset(){
nState = 0, Tx = -1;
memset(f, 0, sizeof(f));
ans = 0;
}
bool Init(){
scanf("%d%d",&n,&m);
if (!n) return false;
Reset();
for (int i = n-1; i>=0; i--){
scanf("%s", map[i]);
if (Tx == -1)
for (int j = m-1; j>=0; j--)
if (map[i][j] == '.'){
Tx = i, Ty = j;
break;
}
for (int j = 0; j<m; j++)
if (map[i][j] == '.') map[i][j] = 0;
else map[i][j] = 1;
}
return true;
}
void dfs(int pos, int r_bracket, int state){
if (pos < 0){
State[nState] = state;
id[state] = nState;
/*
printf("%d: ", nState);
for (int i = 0; i<=m; i++)
printf("%d ", buffer[i]);
printf("\n");
*/
nState ++;
return;
}
if (pos >= r_bracket) // blank
dfs(pos - 1, r_bracket, (state << 2));
if (pos > r_bracket) // right bracket
dfs(pos - 1, r_bracket + 1, (state << 2) | RIGHT);
if (r_bracket) // left bracket
dfs(pos - 1, r_bracket - 1, (state << 2) | LEFT);
}
#define MASK 3
#define Get(state, p) (((state) >> (p<<1)) & MASK)
inline bool OK(int i, int j, int state){
if (Get(state, j) == 1 && Get(state, j+1) == 2 && !(i == Tx && j == Ty)) return false;
for (int k = 0; k<j; k++)
if ((map[i][k] || map[i+1][k]) && Get(state, k)) return false;
if (((j && map[i][j-1]) || (map[i][j])) && Get(state, j)) return false;
for (int k = j+1; k<=m; k++)
if (((i && map[i-1][k-1]) || (map[i][k-1])) && Get(state, k)) return false;
return true;
}
inline int Modify(int state, int p, int v){
return state - (((state >> (p << 1)) & MASK) << (p << 1)) + (v << (p << 1));
}
inline int FindRight(int p, int state){
int cnt = 0, t;
for (int i = p; i<=m; i++){
t = Get(state,i);
if (t == 1) cnt++;
if (t == 2) cnt--;
if (cnt == 0) return i;
}
return -1;
}
inline int FindLeft(int p, int state){
int cnt = 0, t;
for (int i = p; i>=0; i--){
t = Get(state, i);
if (t == 2) cnt++;
if (t == 1) cnt--;
if (cnt == 0) return i;
}
return -1;
}
void Solve(){
dfs(m, 0, 0);
f[0][0][id[(1 << 2) + (2 << (2 * m))]] = 1;
FinalState = (1 << (2 * Ty)) + (2 << (2 * (Ty+1)));
int p, q, tmp, tmp2, state, v, i, j, k;
ll *a;
for (i = 0; i < n; i++){
for (j = 0; j < m; j++){
a = f[i][j+1];
for (k = 0; k < nState; k++)
if ((v = f[i][j][k])){
state = State[k];
p = Get(state, j), q = Get(state, j+1);
if (p == 0 && q == 0){
if (!map[i][j]){
tmp = Modify(Modify(state, j, 1), j+1, 2);
if (OK(i, j+1, tmp))
a[id[tmp]] += v;
}else
a[k] += v;
}else if(p == 0){ // conditions below ensured map[i][j] is empty, because there exists at least one bracket on one side of the grid (i,j)
if (OK(i, j+1, state))
a[k] += v;
tmp = Modify(Modify(state, j, q), j+1, 0);
if (OK(i, j+1, tmp))
a[id[tmp]] += v;
}else if (q == 0){
if (OK(i, j+1, state))
a[k] += v;
tmp = Modify(Modify(state, j, 0), j+1, p);
if (OK(i, j+1, tmp))
a[id[tmp]] += v;
}else{
tmp = Modify(Modify(state, j, 0), j+1, 0);
if (p == 1 && q == 1){
tmp2 = Modify(tmp, FindRight(j+1, state), 1);
if (OK(i, j+1, tmp2))
a[id[tmp2]] += v;
}else if (p == 2 && q == 2){
tmp2 = Modify(tmp, FindLeft(j, state), 2);
if (OK(i, j+1, tmp2))
a[id[tmp2]] += v;
}else if (p == 1 && q == 2){
if (i == Tx && j == Ty && state == FinalState){
printf("%I64d\n", v);
return;
}
}else if (p == 2 && q == 1){
if (OK(i, j+1, tmp))
a[id[tmp]] += v;
}
}
}
}
for (int k = 0; k < nState; k++)
if (Get(State[k], m) == 0 && OK(i+1, 0, tmp = (State[k] << 2)))
f[i+1][0][id[tmp]] += f[i][m][k];
}
printf("%I64d\n", ans);
}
int main(){
while (Init())
Solve();
return 0;
}