• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 42  文章 - 3  trackbacks - 0
            <2025年8月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            常用鏈接

            留言簿(2)

            隨筆檔案

            文章檔案

            網頁收藏

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜


            The original post is
            http://igoro.com/archive/efficient-auto-complete-with-a-ternary-search-tree/

            Over the past couple of years, auto-complete has popped up all over the web. Facebook, YouTube, Google, Bing, MSDN, LinkedIn and lots of other websites all try to complete your phrase as soon as you start typing.

            Auto-complete definitely makes for a nice user experience, but it can be a challenge to implement efficiently. In many cases, an efficient implementation requires the use of interesting algorithms and data structures. In this blog post, I will describe one simple data structure that can be used to implement auto-complete: a ternary search tree.

            Trie: simple but space-inefficient

            Before discussing ternary search trees, let’s take a look at a simple data structure that supports a fast auto-complete lookup but needs too much memory: a trie. A trie is a tree-like data structure in which each node contains an array of pointers, one pointer for each character in the alphabet. Starting at the root node, we can trace a word by following pointers corresponding to the letters in the target word.

            Each node could be implemented like this in C#:

            class TrieNode
            {
            public const int ALPHABET_SIZE = 26;
            public TrieNode[] m_pointers = new TrieNode[ALPHABET_SIZE];
            public bool m_endsString = false;
            }

            Here is a trie that stores words AB, ABBA, ABCD, and BCD. Nodes that terminate words are marked yellow:

             

            gif_1

             

            Implementing auto complete using a trie is easy. We simply trace pointers to get to a node that represents the string the user entered. By exploring the trie from that node down, we can enumerate all strings that complete user’s input.

            But, a trie has a major problem that you can see in the diagram above. The diagram only fits on the page because the trie only supports four letters {A,B,C,D}. If we needed to support all 26 English letters, each node would have to store 26 pointers. And, if we need to support international characters, punctuation, or distinguish between lowercase and uppercase characters, the memory usage grows becomes untenable.

            Our problem has to do with the memory taken up by all the null pointers stored in the node arrays. We could consider using a different data structure in each node, such as a hash map. However, managing thousands and thousands of hash maps is generally not a good idea, so let’s take a look at a better solution.

            Ternary search tree to the rescue

            A ternary tree is a data structure that solves the memory problem of tries in a more clever way. To avoid the memory occupied by unnecessary pointers, each trie node is represented as a tree-within-a-tree rather than as an array. Each non-null pointer in the trie node gets its own node in a ternary search tree.

            For example, the trie from the example above would be represented in the following way as a ternary search tree:

            image

            The ternary search tree contains three types of arrows. First, there are arrows that correspond to arrows in the corresponding trie, shown as dashed down-arrows. Traversing a down-arrow corresponds to “matching” the character from which the arrow starts. The left- and right- arrow are traversed when the current character does not match the desired character at the current position. We take the left-arrow if the character we are looking for is alphabetically before the character in the current node, and the right-arrow in the opposite case.

            For example, green arrows show how we’d confirm that the ternary tree contains string ABBA:

             image

            And this is how we’d find that the ternary string does not contain string ABD:

            image 

            Ternary search tree on a server

            On the web, a significant chunk of the auto-complete work has to be done by the server. Often, the set of possible completions is large, so it is usually not a good idea to download all of it to the client. Instead, the ternary tree is stored on the server, and the client will send prefix queries to the server.

            The client will send a query for words starting with “bin” to the server:

              image

            And the server responds with a list of possible words:

            image 

            Implementation

            Here is a simple ternary search tree implementation in C#:

            public class TernaryTree
            {
            private Node m_root = null;
            private void Add(string s, int pos, ref Node node)
            {
            if (node == null) { node = new Node(s[pos], false); }
            if (s[pos] < node.m_char) { Add(s, pos, ref node.m_left); }
            else if (s[pos] > node.m_char) { Add(s, pos, ref node.m_right); }
            else
            {
            if (pos + 1 == s.Length) { node.m_wordEnd = true; }
            else { Add(s, pos + 1, ref node.m_center); }
            }
            }
            public void Add(string s)
            {
            if (s == null || s == "") throw new ArgumentException();
            Add(s, 0, ref m_root);
            }
            public bool Contains(string s)
            {
            if (s == null || s == "") throw new ArgumentException();
            int pos = 0;
            Node node = m_root;
            while (node != null)
            {
            int cmp = s[pos] - node.m_char;
            if (s[pos] < node.m_char) { node = node.m_left; }
            else if (s[pos] > node.m_char) { node = node.m_right; }
            else
            {
            if (++pos == s.Length) return node.m_wordEnd;
            node = node.m_center;
            }
            }
            return false;
            }
            }

            And here is the Node class:

            class Node
            {
            internal char m_char;
            internal Node m_left, m_center, m_right;
            internal bool m_wordEnd;
            public Node(char ch, bool wordEnd)
            {
            m_char = ch;
            m_wordEnd = wordEnd;
            }
            }

            Remarks

            For best performance, strings should be inserted into the ternary tree in a random order. In particular, do not insert strings in the alphabetical order. Each mini-tree that corresponds to a single trie node would degenerate into a linked list, significantly increasing the cost of lookups. Of course, more complex self-balancing ternary trees can be implemented as well.

            And, don’t use a fancier data structure than you have to. If you only have a relatively small set of candidate words (say on the order of hundreds) a brute-force search should be fast enough.

            Further reading

            Another article on tries is available on DDJ (careful, their implementation assumes that no word is a prefix of another):

            http://www.ddj.com/windows/184410528

            If you like this article, also check out these posts on my blog:


            posted on 2012-06-25 23:26 鷹擊長空 閱讀(482) 評論(0)  編輯 收藏 引用
            久久乐国产综合亚洲精品| 色88久久久久高潮综合影院| 久久精品?ⅴ无码中文字幕| 国产香蕉久久精品综合网| 成人免费网站久久久| 精品国产一区二区三区久久久狼| 精品一区二区久久| 四虎久久影院| 99久久成人国产精品免费| 亚洲精品成人网久久久久久| 久久99国产精品久久久| 伊人久久大香线蕉亚洲五月天| 国产免费久久精品99久久| 久久香综合精品久久伊人| 人妻无码精品久久亚瑟影视| 国产精品内射久久久久欢欢| 亚洲精品蜜桃久久久久久| 久久久精品国产| 久久精品国产亚洲AV不卡| 好属妞这里只有精品久久| 久久精品人人做人人妻人人玩| 久久久久久青草大香综合精品| 久久这里只有精品久久| 97r久久精品国产99国产精| 嫩草伊人久久精品少妇AV| 久久久久久久精品成人热色戒| 久久夜色撩人精品国产| 国产亚洲成人久久| 久久精品www人人爽人人| 国产精品激情综合久久| 亚洲αv久久久噜噜噜噜噜| 欧美日韩成人精品久久久免费看| 中文字幕亚洲综合久久| 久久噜噜电影你懂的| 日本一区精品久久久久影院| 久久精品国产99国产精品澳门| 狠狠色丁香久久综合婷婷| 亚洲成色999久久网站| 国产免费久久精品丫丫| 天天做夜夜做久久做狠狠| 国内高清久久久久久|