建議先看看前言:http://www.shnenglu.com/tanky-woo/archive/2011/04/09/143794.html
這一章把前面三篇的代碼總結起來,然后推薦一些網上紅黑樹的優秀講解資源。
代碼:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
/* * Author: Tanky Woo * Blog: www.WuTianQi.com * Description: 《算法導論》第13章 Red Black Tree */ #include <iostream> //#define NULL 0 using namespace std; const int RED = 0; const int BLACK = 1; // ① typedef struct Node{ int color; int key; Node *lchild, *rchild, *parent; }Node, *RBTree; static Node NIL = {BLACK, 0, 0, 0, 0}; #define NULL (&NIL) // ② Node * RBTreeSearch(RBTree T, int k) { if(T == NULL || k == T->key) return T; if(k < T->key) return RBTreeSearch(T->lchild, k); else return RBTreeSearch(T->rchild, k); } /* BSNode * IterativeRBTreeSearch(RBTree T, int k) { while(T != NULL && k != T->key) { if(k < T->lchild->key); x = T->lchild; else x = T->rchild; } return x; } */ // ③ Node * RBTreeMinimum(RBTree T) { while(T->lchild != NULL) T = T->lchild; return T; } Node * RBTreeMaximum(RBTree T) { while(T->rchild != NULL) T = T->rchild; return T; } // ④ Node *RBTreeSuccessor(Node *x) { if(x->rchild != NULL) return RBTreeMinimum(x->rchild); Node *y = x->parent; while(y != NULL && x == y->rchild) { x = y; y = y->parent; } return y; } void LeftRotate(RBTree &T, Node *x) { Node *y = x->rchild; x->rchild = y->lchild; if(y->lchild != NULL) y->lchild->parent = x; y->parent = x->parent; if(x->parent == NULL) T = y; else { if(x == x->parent->lchild) x->parent->lchild = y; else x->parent->rchild = y; } y->lchild = x; x->parent = y; } void RightRotate(RBTree &T, Node *x) { Node *y = x->rchild; x->rchild = y->lchild; if(y->lchild != NULL) y->lchild->parent = x; y->parent = x->parent; if(x->parent == NULL) T = y; else { if(x == x->parent->lchild) x->parent->lchild = y; else x->parent->rchild = y; } y->lchild = x; x->parent = y; } // ⑤ void RBInsertFixup(RBTree &T, Node *z) { while(z->parent->color == RED) { if(z->parent == z->parent->parent->lchild) { Node *y = z->parent->parent->rchild; //////////// Case1 ////////////// if(y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { ////////////// Case 2 ////////////// if(z == z->parent->rchild) { z = z->parent; LeftRotate(T, z); } ////////////// Case 3 ////////////// z->parent->color = BLACK; z->parent->parent->color = RED; RightRotate(T, z->parent->parent); } } else { Node *y = z->parent->parent->lchild; if(y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if(z == z->parent->lchild) { z = z->parent; RightRotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; LeftRotate(T, z->parent->parent); } } } T->color = BLACK; } void RBTreeInsert(RBTree &T, int k) { //T->parent->color = BLACK; Node *y = NULL; Node *x = T; Node *z = new Node; z->key = k; z->lchild = z->parent = z->rchild = NULL; while(x != NULL) { y = x; if(k < x->key) x = x->lchild; else x = x->rchild; } z->parent = y; if(y == NULL) { T = z; T->parent = NULL; T->parent->color = BLACK; } else if(k < y->key) y->lchild = z; else y->rchild = z; z->lchild = NULL; z->rchild = NULL; z->color = RED; RBInsertFixup(T, z); } // ⑤ void RBDeleteFixup(RBTree &T, Node *x) { while(x != T && x->color == BLACK) { if(x == x->parent->lchild) { Node *w = x->parent->rchild; ///////////// Case 1 ///////////// if(w->color == RED) { w->color = BLACK; x->parent->color = RED; LeftRotate(T, x->parent); w = x->parent->rchild; } ///////////// Case 2 ///////////// if(w->lchild->color == BLACK && w->rchild->color == BLACK) { w->color = RED; x = x->parent; } else { ///////////// Case 3 ///////////// if(w->rchild->color == BLACK) { w->lchild->color = BLACK; w->color = RED; RightRotate(T, w); w = x->parent->rchild; } ///////////// Case 4 ///////////// w->color = x->parent->color; x->parent->color = BLACK; w->rchild->color = BLACK; LeftRotate(T, x->parent); x = T; } } else { Node *w = x->parent->lchild; if(w->color == RED) { w->color = BLACK; x->parent->color = RED; RightRotate(T, x->parent); w = x->parent->lchild; } if(w->lchild->color == BLACK && w->rchild->color == BLACK) { w->color = RED; x = x->parent; } else { if(w->lchild->color == BLACK) { w->rchild->color = BLACK; w->color = RED; LeftRotate(T, w); w = x->parent->lchild; } w->color = x->parent->color; x->parent->color = BLACK; w->lchild->color = BLACK; RightRotate(T, x->parent); x = T; } } } x->color = BLACK; } Node* RBTreeDelete(RBTree T, Node *z) { Node *x, *y; // z是要刪除的節點,而y是要替換z的節點 if(z->lchild == NULL || z->rchild == NULL) y = z; // 當要刪除的z至多有一個子樹,則y=z; else y = RBTreeSuccessor(z); // y是z的后繼 if(y->lchild != NULL) x = y->lchild; else x = y->rchild; // 無條件執行p[x] = p[y] x->parent = y->parent; //如果y至多只有一個子樹,則使y的子樹成為y的父親節點的子樹 if(y->parent == NULL) // 如果y沒有父親節點,則表示y是根節點,詞典其子樹x為根節點 T = x; else if(y == y->parent->lchild) // 如果y是其父親節點的左子樹,則y的子樹x成為其父親節點的左子樹, // 否則成為右子樹 y->parent->lchild = x; else y->parent->rchild = x; if(y != z) z->key = y->key; if(y->color == BLACK) RBDeleteFixup(T, x); return y; } void InRBTree(RBTree T) { if(T != NULL) { InRBTree(T->lchild); cout << T->key << " "; InRBTree(T->rchild); } } void PrintRBTree(RBTree T) { if(T != NULL) { PrintRBTree(T->lchild); cout << T->key << ": "; // 自身的顏色 if(T->color == 0) cout << " Color: RED "; else cout << " Color: BLACK "; // 父親結點的顏色 if(T == NULL) cout << " Parent: BLACK "; else { if(T->color == 0) cout << " Parent: RED "; else cout << " Parent: BLACK "; } // 左兒子結點的顏色 if(T->lchild == NULL) cout << " Lchild: BLACK "; else { if(T->lchild->color == 0) cout << " Lchild: RED "; else cout << " Lchild: BLACK "; } // 右兒子結點的顏色 if(T->rchild == NULL) cout << " Rchild: BLACK "; else { if(T->rchild->color == 0) cout << " Rchild: RED "; else cout << " Rchild: BLACK "; } cout << endl; PrintRBTree(T->rchild); } } int main() { int m; RBTree T = NULL; for(int i=0; i<9; ++i) { cin >> m; RBTreeInsert(T, m); cout << "在紅黑樹中序查找:"; InRBTree(T); cout << endl; } PrintRBTree(T); cout << "刪除根節點后:"; RBTreeDelete(T, T); InRBTree(T); } |
截圖如圖:
如圖顯示,這里用到了書上圖13-4.可以看到,結點1, 5, 7, 8, 14是黑結點.和圖13-4顯示一樣.
另外,我在學習紅黑樹的過程中,在網上發現了幾個不錯的資料,這里給大家推薦下:
天枰座的唐風朋友的:
http://liyiwen.iteye.com/blog/345800
http://liyiwen.iteye.com/blog/345799
wangdei的紅黑樹算法,附AVL樹的比較:
http://wangdei.iteye.com/blog/236157
July的紅黑樹算法層層剖析與逐步實現:
感謝上面的朋友寫的這么好的分析文章。
在我獨立博客上的原文:http://www.wutianqi.com/?p=2473
歡迎大家互相學習,互相進步!