背包之01背包、完全背包、多重背包詳解
PS:大家覺得寫得還過得去,就幫我頂博客,謝謝。
首先說下動態規劃,動態規劃這東西就和遞歸一樣,只能找局部關系,若想全部列出來,是很難的,比如漢諾塔。你可以說先把除最后一層的其他所有層都移動到2,再把最后一層移動到3,最后再把其余的從2移動到3,這是一個直觀的關系,但是想列舉出來是很難的,也許當層數n=3時還可以模擬下,再大一些就不可能了,所以,諸如遞歸,動態規劃之類的,不能細想,只能找局部關系。

1.漢諾塔圖片
(引至杭電課件:DP最關鍵的就是狀態,在DP時用到的數組時,也就是存儲的每個狀態的最優值,也就是記憶化搜索)
要了解背包,首先得清楚動態規劃:
動態規劃算法可分解成從先到后的4個步驟:
1. 描述一個最優解的結構;
2. 遞歸地定義最優解的值;
3. 以“自底向上”的方式計算最優解的值;
4. 從已計算的信息中構建出最優解的路徑。
其中步驟1~3是動態規劃求解問題的基礎。如果題目只要求最優解的值,則步驟4可以省略。
背包的基本模型就是給你一個容量為V的背包
在一定的限制條件下放進最多(最少?)價值的東西
當前狀態→ 以前狀態
看了dd大牛的《背包九講》(點擊下載),迷糊中帶著一絲清醒,這里我也總結下01背包,完全背包,多重背包這三者的使用和區別,部分會引用dd大牛的《背包九講》,如果有錯,歡迎指出。
(www.wutianqi.com留言即可)
首先我們把三種情況放在一起來看:
01背包(ZeroOnePack): 有N件物品和一個容量為V的背包。(每種物品均只有一件)第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。
完全背包(CompletePack): 有N種物品和一個容量為V的背包,每種物品都有無限件可用。第i種物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。
多重背包(MultiplePack): 有N種物品和一個容量為V的背包。第i種物品最多有n[i]件可用,每件費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。
比較三個題目,會發現不同點在于每種背包的數量,01背包是每種只有一件,完全背包是每種無限件,而多重背包是每種有限件。
——————————————————————————————————————————————————————————–:
01背包(ZeroOnePack): 有N件物品和一個容量為V的背包。(每種物品均只有一件)第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。
這是最基礎的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。
用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態轉移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
把這個過程理解下:在前i件物品放進容量v的背包時,
它有兩種情況:
第一種是第i件不放進去,這時所得價值為:f[i-1][v]
第二種是第i件放進去,這時所得價值為:f[i-1][v-c[i]]+w[i]
(第二種是什么意思?就是如果第i件放進去,那么在容量v-c[i]里就要放進前i-1件物品)
最后比較第一種與第二種所得價值的大小,哪種相對大,f[i][v]的值就是哪種。
(這是基礎,要理解!)
這里是用二位數組存儲的,可以把空間優化,用一位數組存儲。
用f[0..v]表示,f[v]表示把前i件物品放入容量為v的背包里得到的價值。把i從1~n(n件)循環后,最后f[v]表示所求最大值。
*這里f[v]就相當于二位數組的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重點!思考)
首先要知道,我們是通過i從1到n的循環來依次表示前i件物品存入的狀態。即:for i=1..N
現在思考如何能在是f[v]表示當前狀態是容量為v的背包所得價值,而又使f[v]和f[v-c[i]]+w[i]標簽前一狀態的價值?
逆序!
這就是關鍵!
1
for i=1..N
2
for v=V..0
3
f[v]=max
{f[v],f[v-c[i]]+w[i]};
4