• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            superman

            聚精會神搞建設(shè) 一心一意謀發(fā)展
            posts - 190, comments - 17, trackbacks - 0, articles - 0
               :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            ZOJ 1102 - Phylogenetic Trees Inherited

            Posted on 2008-04-06 11:13 superman 閱讀(428) 評論(0)  編輯 收藏 引用 所屬分類: ZOJ

            Official Solution:

            Problem G: Phylogenetic Trees Inherited

            The first thing to observe is that the different positions in every sequence are independent of each other. This reduces the tree of sequences to a tree of amino acids. At the root of the tree, or for that matter of any sub-tree, there may be many possible amino acids leading to optimal costs. Suppose, you have calculated for two sub-trees Tl and Tr the sets of amino-acids leading to optimal costs Al and Ar. Adjacent sub-trees Tl and Tr have as their father the node T. Now you want to find the set of amino-acids A that you can mark T with, leading to optimal costs for T.

            There are two cases: if the intersection of Al with Ar is non-empty, define A as just this intersection, otherwise define A to be the union of Al and Ar. To see why this is true, observe the extra costs you get, when you assemble T from Tl and Tr. In the first case, you have 0 extra costs when you take an amino-acid from the intersection, but 1 or 2 extra costs when you do not. In the second case, you have 1 extra costs when you take an amino-acid from the union, but 2 extra-costs when you do not. Now, you may want to assemble T not from Tl and Tr but from some other sub-optimal trees. As you can easily verify, this leads to sub-optimal costs for T as well.

            This reasoning is carried over straightforwardly to an induction proof and leads to a dynamic programming solution. Since the amino-acids are upper-case letters, you can represent sets of amino-acids as ints. The set operations you need are then easily performed as bitwise and respectively or. Whenever you do a union operation, your costs increase by 1.

            Another, more straight-forward solution is to calculate for each node of the tree the optimal costs for every amino acid the node can be marked with. This is done by trying every possible combination of amino acids for the two sub-trees, assuming their optimal costs have already been calculated. Since this solution might turn out to be too inefficient, it can be improved upon by observing that a father node always can be marked with either the left or the right son's amino-acid - there is no need to take an amino acid that differs from both.

            Judges' test data was constructed from a test-case with a few long sequences, a test-case with many short sequences, a test-case where every possible pair of amino-acids occured, and 100 random-generated test-cases where length and number of sequences are geometrically distributed. The total number of test-cases is 110. Since there may be multiple correct answers for the test cases, a special verification program was written by slightly modifying the judges' solution.


             1 /* Accepted 1102 C++ 00:00.56 1040K */
             2 #include <string>
             3 #include <iostream>
             4 
             5 using namespace std;
             6 
             7 int main()
             8 {
             9     int n, l;
            10     while((cin >> n >> l) && n && l)
            11     {
            12         int heap[2048], cost = 0;
            13         string seq[1024];
            14         
            15         for(int i = 0; i < n; i++)
            16             cin >> seq[i];
            17         
            18         for(int i = 0; i < l; i++)
            19         {
            20             for(int k = 0; k < n; k++)
            21                 heap[n + k] = 1 << (seq[k][i] - 'A');
            22             for(int k = n - 1; k >= 1; k--)
            23                 if((heap[k] = heap[2 * k] & heap[2 * k + 1]) == 0)
            24                 {
            25                     cost++;
            26                     heap[k] = heap[2 * k] | heap[2 * k + 1];
            27                 }
            28             char c = 'A';
            29             while(heap[1>>= 1)
            30                 c++;
            31             cout << c;
            32         }
            33         cout << ' ' << cost << endl;
            34     }
            35     
            36     return 0;
            37 }
            38 
            久久天天躁狠狠躁夜夜96流白浆| 一本大道久久香蕉成人网| 99久久99久久精品免费看蜜桃| 91精品国产高清久久久久久io| 久久国产精品成人免费| 亚洲精品国产第一综合99久久| 一本一道久久综合狠狠老| 国产亚洲婷婷香蕉久久精品| 久久亚洲国产成人精品无码区| 久久成人国产精品免费软件| 99久久精品国产毛片| 成人久久久观看免费毛片| 亚洲va中文字幕无码久久不卡 | 国产婷婷成人久久Av免费高清| 亚洲成色WWW久久网站| 国产精品熟女福利久久AV| 国产精品亚洲综合久久| 久久免费线看线看| 久久婷婷五月综合国产尤物app | 久久精品国产亚洲AV无码麻豆 | 99精品久久久久久久婷婷| 亚洲中文字幕无码久久综合网| 久久se精品一区精品二区国产| 精品久久8x国产免费观看| 国产精品久久久久久久久久影院| 精品国产一区二区三区久久蜜臀| 69久久夜色精品国产69| 思思久久99热只有频精品66| 久久午夜无码鲁丝片午夜精品| 91麻精品国产91久久久久 | 一本一道久久综合狠狠老| 色诱久久av| 麻豆久久| 亚洲国产成人久久综合野外| 久久国产视屏| 无夜精品久久久久久| 日本高清无卡码一区二区久久| 午夜视频久久久久一区| 一97日本道伊人久久综合影院| 麻豆精品久久久久久久99蜜桃| 久久大香萑太香蕉av|