• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            superman

            聚精會(huì)神搞建設(shè) 一心一意謀發(fā)展
            posts - 190, comments - 17, trackbacks - 0, articles - 0
               :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            ZOJ 1102 - Phylogenetic Trees Inherited

            Posted on 2008-04-06 11:13 superman 閱讀(430) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ZOJ

            Official Solution:

            Problem G: Phylogenetic Trees Inherited

            The first thing to observe is that the different positions in every sequence are independent of each other. This reduces the tree of sequences to a tree of amino acids. At the root of the tree, or for that matter of any sub-tree, there may be many possible amino acids leading to optimal costs. Suppose, you have calculated for two sub-trees Tl and Tr the sets of amino-acids leading to optimal costs Al and Ar. Adjacent sub-trees Tl and Tr have as their father the node T. Now you want to find the set of amino-acids A that you can mark T with, leading to optimal costs for T.

            There are two cases: if the intersection of Al with Ar is non-empty, define A as just this intersection, otherwise define A to be the union of Al and Ar. To see why this is true, observe the extra costs you get, when you assemble T from Tl and Tr. In the first case, you have 0 extra costs when you take an amino-acid from the intersection, but 1 or 2 extra costs when you do not. In the second case, you have 1 extra costs when you take an amino-acid from the union, but 2 extra-costs when you do not. Now, you may want to assemble T not from Tl and Tr but from some other sub-optimal trees. As you can easily verify, this leads to sub-optimal costs for T as well.

            This reasoning is carried over straightforwardly to an induction proof and leads to a dynamic programming solution. Since the amino-acids are upper-case letters, you can represent sets of amino-acids as ints. The set operations you need are then easily performed as bitwise and respectively or. Whenever you do a union operation, your costs increase by 1.

            Another, more straight-forward solution is to calculate for each node of the tree the optimal costs for every amino acid the node can be marked with. This is done by trying every possible combination of amino acids for the two sub-trees, assuming their optimal costs have already been calculated. Since this solution might turn out to be too inefficient, it can be improved upon by observing that a father node always can be marked with either the left or the right son's amino-acid - there is no need to take an amino acid that differs from both.

            Judges' test data was constructed from a test-case with a few long sequences, a test-case with many short sequences, a test-case where every possible pair of amino-acids occured, and 100 random-generated test-cases where length and number of sequences are geometrically distributed. The total number of test-cases is 110. Since there may be multiple correct answers for the test cases, a special verification program was written by slightly modifying the judges' solution.


             1 /* Accepted 1102 C++ 00:00.56 1040K */
             2 #include <string>
             3 #include <iostream>
             4 
             5 using namespace std;
             6 
             7 int main()
             8 {
             9     int n, l;
            10     while((cin >> n >> l) && n && l)
            11     {
            12         int heap[2048], cost = 0;
            13         string seq[1024];
            14         
            15         for(int i = 0; i < n; i++)
            16             cin >> seq[i];
            17         
            18         for(int i = 0; i < l; i++)
            19         {
            20             for(int k = 0; k < n; k++)
            21                 heap[n + k] = 1 << (seq[k][i] - 'A');
            22             for(int k = n - 1; k >= 1; k--)
            23                 if((heap[k] = heap[2 * k] & heap[2 * k + 1]) == 0)
            24                 {
            25                     cost++;
            26                     heap[k] = heap[2 * k] | heap[2 * k + 1];
            27                 }
            28             char c = 'A';
            29             while(heap[1>>= 1)
            30                 c++;
            31             cout << c;
            32         }
            33         cout << ' ' << cost << endl;
            34     }
            35     
            36     return 0;
            37 }
            38 
            看全色黄大色大片免费久久久| 久久99国产精一区二区三区| 国产精品福利一区二区久久| 韩国免费A级毛片久久| 久久午夜综合久久| 午夜福利91久久福利| 久久国产欧美日韩精品| 午夜欧美精品久久久久久久| 久久精品免费观看| 日批日出水久久亚洲精品tv| 久久久久亚洲精品日久生情| 久久这里只有精品18| 草草久久久无码国产专区| 久久人妻少妇嫩草AV无码蜜桃| 国产 亚洲 欧美 另类 久久| 久久久久亚洲精品天堂久久久久久 | 久久久久久久波多野结衣高潮| 欧美激情一区二区久久久| 亚洲精品乱码久久久久久蜜桃| 久久大香萑太香蕉av| 99久久99久久精品免费看蜜桃 | 国产香蕉久久精品综合网| 久久99精品久久久久久野外| 久久久久se色偷偷亚洲精品av| 亚洲精品乱码久久久久久中文字幕 | 久久精品国产亚洲一区二区| 性高湖久久久久久久久| 久久99热这里只有精品国产| 亚洲熟妇无码另类久久久| 色综合久久天天综合| 亚洲va久久久噜噜噜久久天堂| 国内精品久久久久久久coent| 中文字幕日本人妻久久久免费| 久久天堂电影网| 亚洲AV无码久久精品成人| 久久99精品久久久久久秒播| 久久99国内精品自在现线| 久久国产欧美日韩精品| 老男人久久青草av高清| 无码人妻少妇久久中文字幕| 国产精品免费久久久久影院|