最近在讀的一本書《數(shù)學(xué)之美》,由于自己對(duì)馬爾可夫鏈缺乏相關(guān)的知識(shí)背景,故學(xué)習(xí)了一下。對(duì)于N久沒(méi)有看過(guò)概率論的人來(lái)說(shuō),重拾起來(lái)也花費(fèi)了一點(diǎn)時(shí)間。比如:P(A|B)是指在B的條件下A的概率,諸如此類,都需要重新復(fù)習(xí)一下,正所謂溫故而知新。知道這個(gè)了,也就不難理解馬爾可夫鏈的性質(zhì),即
每一步可以移動(dòng)到任何一個(gè)相鄰的點(diǎn),在這里移動(dòng)到每一個(gè)點(diǎn)的概率都是相同的。
關(guān)于馬爾可夫鏈的定義: http://zh.wikipedia.org/wiki/%E9%A6%AC%E5%8F%AF%E5%A4%AB%E9%8F%88
隱含馬爾可夫模型是上述馬爾可夫鏈的一個(gè)擴(kuò)展:任何一個(gè)時(shí)刻t的狀態(tài)St是不可見的。隱含馬爾可夫模型在每一個(gè)時(shí)刻t會(huì)輸出一個(gè)符號(hào),而且這個(gè)符合和st相關(guān),而且僅和st相關(guān),這個(gè)被稱為獨(dú)立輸出假設(shè)。關(guān)于隱含馬爾可夫模型的成功應(yīng)用可以參見吳軍的《數(shù)學(xué)之美》第5章的內(nèi)容。
額,快到上班時(shí)間了,小總結(jié)一下。繼續(xù)碼農(nóng)中......