• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 68  文章 - 57  trackbacks - 0
            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            常用鏈接

            留言簿(8)

            隨筆分類(74)

            隨筆檔案(68)

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

              給定n個數求這n個數劃分成互不相交的m段的最大m子段和。
              經典的動態規劃優化的問題。設f(i, j)表示前i個數劃分成j段,且包括第i個數的最大m子段和,那么有dp方程:
                f(i, j) = max { f(i - 1, j) + v[i], max {f(k, j - 1) + v[i]}(k = j - 1 ... i - 1) }
              也就是說第i個數要么自己劃到第j段,要么和前一個數一起劃到第j段里面,轉移是O(n)的,總復雜度O(n * n * m)。
              可以引入一個輔助數組來優化轉移。設g(i, j)表示前i個數劃分成j段的最大子段和(注意第i個數未必在j段里面),那么遞推關系如下:
                g(i, j) = max{g(i - 1, j), f(i, j)},分是否加入第i個數來轉移
              這樣f的遞推關系就變成:
                f(i, j) = max{f(i - 1, j), g(i - 1, j - 1)} + v[i],轉移變成了O(1)
              這樣最后的結果就是g[n][m],通過引入輔助數組巧妙的優化了轉移。實現的時候可以用一維數組,速度很快。

            附HDU 1024題目代碼:
            #include <cstdio>
            #include 
            <algorithm>
            using namespace std;
            const int N = 1000010, INF = 0x3fffffff;

            int f[N], g[N], a[N];

            int max_sum(int m, int n)
            {
                
            int i, j, t;
                
            for (i = 1; i <= n; i++)
                {
                    t 
            = min(i, m);
                    
            for (j = 1; j <= t; j++)
                    {
                        f[j] 
            = max(f[j], g[j-1]) + a[i];
                        g[j
            -1>?= f[j-1];
                    }
                    g[j
            -1>?= f[j-1];
                }
                
            return g[m];
            }

            int main()
            {
                
            int m, n;

                
            while (scanf("%d %d"&m, &n) == 2 && m && n)
                {
                    
            for (int i = 1; i <= n; i++)
                    {
                        f[i] 
            = g[i] = -INF;
                        scanf(
            "%d"&a[i]);
                    }
                    printf(
            "%d\n", max_sum(m, n));
                }

                
            return 0;
            }
            posted on 2009-06-19 11:18 sdfond 閱讀(4869) 評論(4)  編輯 收藏 引用 所屬分類: Algorithm - Dynamic Programming

            FeedBack:
            # re: 最大M子段和 2010-04-24 10:27 qq258513813
            能不能給我更詳細點呢? 動態規劃感覺比較難理解,這方面沒有什么基礎,好急哦。  回復  更多評論
              
            # re: 最大M子段和 2010-04-24 18:36 sdfond
            @qq258513813
            我分析過程寫的很詳細了,實現的時候降了一維,你要是知道背包問題如何實現的話這個就不難理解,如果實在理解不了,就先把最基礎的那些學了吧,最大字段和、子矩陣、子立方體什么的,我感覺我已經不能更詳細了-_-!  回復  更多評論
              
            # re: 最大M子段和 2011-03-16 17:55 阿皮
            學習了, 謝謝  回復  更多評論
              
            # re: 最大M子段和[未登錄] 2012-09-20 10:58 Bill
            @阿皮
            可以看這個鏈接http://blog.163.com/sentimental_man/blog/static/7300161820119109533172/
            比作者的詳細很多。  回復  更多評論
              
            国产视频久久| 久久久久成人精品无码中文字幕 | 久久精品天天中文字幕人妻| 国产成人久久精品一区二区三区| 欧美午夜精品久久久久久浪潮| 午夜精品久久久内射近拍高清| 亚洲中文字幕久久精品无码APP | 久久这里只有精品久久| 久久无码一区二区三区少妇 | 亚洲国产日韩欧美久久| 久久国语露脸国产精品电影| 久久久婷婷五月亚洲97号色| 久久人人爽人人爽人人片AV东京热| 99精品久久久久久久婷婷| 夜夜亚洲天天久久| 久久综合综合久久综合| 久久久久久国产精品免费免费| 久久综合亚洲欧美成人| 99久久香蕉国产线看观香| 91视频国产91久久久| 一本久久a久久精品综合香蕉| a级成人毛片久久| A级毛片无码久久精品免费| 国产午夜福利精品久久| 无遮挡粉嫩小泬久久久久久久| 久久久久这里只有精品| 久久久久久狠狠丁香| 国产成人久久AV免费| 国内精品九九久久精品| 综合久久一区二区三区 | 久久99国产精品久久99小说| 欧美亚洲国产精品久久蜜芽| 久久人爽人人爽人人片AV | 日韩久久久久久中文人妻| 亚洲精品无码久久久久AV麻豆| 国产99久久久国产精品~~牛| 国产国产成人精品久久| 久久精品国产一区| 热99re久久国超精品首页| 色综合久久天天综合| 国产精品美女久久久久AV福利|