青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

MyMSDN

MyMSDN記錄開發新知道

boost::tuple

boost::tuple<derived> tup4;
boost::tuple<base> tup5;
tup5 = tup4;
tup4.get<0>().test();
tup5.get<0>().test(); // 丟失多態性
derived d; boost::tuple<derived*> tup6(&d); boost::tuple<base*> tup7; tup7 = tup6; tup6.get<0>()->test(); tup7.get<0>()->test(); // 恢復多態性(方法1) boost::tuple<derived&> tup8(d); boost::tuple<base&> tup9(tup8);
// tup9 = tup8; 不能使用該方法,因為無法對引用賦值。
tup8.get<0>().test(); tup9.get<0>().test(); // 恢復多態性(方法2)
/*
 * tuple.cpp
 *
 *  Created on: 2010-3-25
 *      Author: GoCool
 */
#include <stdlib.h>
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include "../header/baseClass.h"

using namespace std;
class X {
  X();
public:
  X(std::string){}
};
class Y {
  Y(const Y&);
public:
  Y(){}
};
class A {
};
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
void f(int i);

void cut_off_rule(void);
int main(void){
    // add a new tuple
    boost::tuple<int,double,std::string>   triple(42, 3.14, "My first tuple!");
    int a = triple.get<0>();
    ++a;
    cout << a << endl;
    cout << triple << endl;

    cut_off_rule();

    boost::tuple<int, double> pair = boost::make_tuple(21, 22.5);
    cout << pair << endl;

    cut_off_rule();

    int pair_element_1 = -1;
    double pair_element_2 = -1;
    boost::tie(pair_element_1, pair_element_2) = pair;

    cout << pair_element_1 << "," << pair_element_2 << endl;

    cut_off_rule();

    boost::tuple<int,std::string,derived> tup1(-5,"Tuples");
    boost::tuple<unsigned int,std::string,base> tup2;
    tup2=tup1;
    tup2.get<2>().test();
    std::cout << "Interesting value: " << tup2.get<0>() << '\n';
    const boost::tuple<double,std::string,base> tup3(tup2);
    // Description    Resource    Path    Location    Type
    // assignment of read-only location    tuple.cpp    boost_tuple/src    45    C/C++ Problem
    // tup3.get<0>()=3.14;

    cut_off_rule();

    boost::tuple<X,X,X> obj = boost::tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")); // ok

    cut_off_rule();

    double dNum = 5;
    boost::tuple<double&> numTuple(dNum);               // ok

    // boost::tuple<double&>(dNum+3.14);          // error: cannot initialize
                                    // non-const reference with a temporary

    boost::tuple<const double&>(dNum+3.14);    // ok, but dangerous:
                                    // the element becomes a dangling reference
    cut_off_rule();

    // char arr[2] = {'a', 'b'};
    // boost::tuple<char[2]>(arr); // error, arrays can not be copied
    // boost::tuple<char[2], Y>(arr, Y()); // error, neither arrays nor Y can be copied

    boost::tuple<char[2], Y>();       // ok

    cut_off_rule();

    boost::tuple<void (*)(int)> pFTuple1 = boost::make_tuple(&f);
    pFTuple1.get<0>()(10);

    boost::tuple<void (*)(int)> pFTuple2 = boost::make_tuple(boost::ref(f));
    pFTuple2.get<0>()(20);

    boost::tuple<void (&)(int)> pFTuple3(f);
    pFTuple3.get<0>()(30);

    boost::tuple<boost::tuple<void (&)(int)> > pFTuple4(f);
    pFTuple4.get<0>().get<0>()(40);

    cut_off_rule();

    // boost::tuple<int, char> stdPairToTuple = std::make_pair(1, 'a');

    cut_off_rule();

    boost::tuple<std::string, int, A> t1(std::string("same?"), 2, A());
    boost::tuple<std::string, long> t2(std::string("same?"), 2);
    boost::tuple<std::string, long> t3(std::string("different"), 3);
    // t1 == t2;        // true

    cut_off_rule();

    int i; char c;
    boost::tie(i, c) = std::make_pair(1, 'a');
    cout << i << " " << c << endl;

    cut_off_rule();

    boost::tie(boost::tuples::ignore, c) = std::make_pair(1, 'a');
    cout << c << endl;

    cut_off_rule();

    int myX = -1;
    double myY = -2;
    boost::tuple<int, double> f2(2);
    boost::tie(myX, myY) = f2; // #2
    cout << "myX = " << myX << ", myY = " <<myY << endl;
}
void cut_off_rule(void) {
    cout << "-----------------------------------" << endl;
}

void f(int i) {
    cout << "f(" << i << ")" << endl;
}


tuple是boost庫中一個類似標準std::pair庫庫,但pair只能支持兩種元素,而tuple則可以支持大于兩種的。

更多詳解:http://www.boost.org/doc/libs/1_42_0/libs/tuple/doc/tuple_users_guide.html

以下內容直接引自原文:


 

Boost C++ LibrariesBoost C++ Libraries

“...one of the most highly regarded and expertly designed C++ library projects in the world.” — Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

C++ 
Boost

The Boost Tuple Library

A tuple (or n-tuple) is a fixed size collection of elements. Pairs, triples, quadruples etc. are tuples. In a programming language, a tuple is a data object containing other objects as elements. These element objects may be of different types.

Tuples are convenient in many circumstances. For instance, tuples make it easy to define functions that return more than one value.

Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs. Unfortunately C++ does not. To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.

Table of Contents

  1. Using the library
  2. Tuple types
  3. Constructing tuples
  4. Accessing tuple elements
  5. Copy construction and tuple assignment
  6. Relational operators
  7. Tiers
  8. Streaming
  9. Performance
  10. Portability
  11. Acknowledgements
  12. References
More details

Advanced features (describes some metafunctions etc.).

Rationale behind some design/implementation decisions.

Using the library

To use the library, just include:

#include "boost/tuple/tuple.hpp"

Comparison operators can be included with:

#include "boost/tuple/tuple_comparison.hpp"

To use tuple input and output operators,

#include "boost/tuple/tuple_io.hpp"

Both tuple_io.hpp and tuple_comparison.hpp include tuple.hpp.

All definitions are in namespace ::boost::tuples, but the most common names are lifted to namespace ::boost with using declarations. These names are: tuple, make_tuple, tie and get. Further, ref and cref are defined directly under the ::boost namespace.

Tuple types

A tuple type is an instantiation of the tuple template. The template parameters specify the types of the tuple elements. The current version supports tuples with 0-10 elements. If necessary, the upper limit can be increased up to, say, a few dozen elements. The data element can be any C++ type. Note that void and plain function types are valid C++ types, but objects of such types cannot exist. Hence, if a tuple type contains such types as elements, the tuple type can exist, but not an object of that type. There are natural limitations for element types that cannot be copied, or that are not default constructible (see 'Constructing tuples' below).

For example, the following definitions are valid tuple instantiations (A, B and C are some user defined classes):

tuple<int>
tuple<double&, const double&, const double, double*, const double*>
tuple<A, int(*)(char, int), B(A::*)(C&), C>
tuple<std::string, std::pair<A, B> >
tuple<A*, tuple<const A*, const B&, C>, bool, void*>

Constructing tuples

The tuple constructor takes the tuple elements as arguments. For an n-element tuple, the constructor can be invoked with k arguments, where 0 <= k <= n. For example:

tuple<int, double>() 
tuple<int, double>(1)
tuple<int, double>(1, 3.14)

If no initial value for an element is provided, it is default initialized (and hence must be default initializable). For example.

class X {
X();
public:
X(std::string);
};

tuple<X,X,X>() // error: no default constructor for X
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok

In particular, reference types do not have a default initialization:

tuple<double&>()                // error: reference must be 
// initialized explicitly

double d = 5;
tuple<double&>(d) // ok

tuple<double&>(d+3.14) // error: cannot initialize
// non-const reference with a temporary

tuple<const double&>(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference

Using an initial value for an element that cannot be copied, is a compile time error:

class Y { 
Y(const Y&);
public:
Y();
};

char a[10];

tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
tuple<char[10], Y>(); // ok

Note particularly that the following is perfectly ok:

Y y;
tuple<char(&)[10], Y&>(a, y);

It is possible to come up with a tuple type that cannot be constructed. This occurs if an element that cannot be initialized has a lower index than an element that requires initialization. For example: tuple<char[10], int&>.

In sum, the tuple construction is semantically just a group of individual elementary constructions.

The make_tuple function

Tuples can also be constructed using the make_tuple (cf. std::make_pair) helper functions. This makes the construction more convenient, saving the programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}

By default, the element types are deduced to the plain non-reference types. E.g.:

void foo(const A& a, B& b) { 
...
make_tuple(a, b);

The make_tuple invocation results in a tuple of type tuple<A, B>.

Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied. Therefore, the programmer can control the type deduction and state that a reference to const or reference to non-const type should be used as the element type instead. This is accomplished with two helper template functions: ref and cref. Any argument can be wrapped with these functions to get the desired type. The mechanism does not compromise const correctness since a const object wrapped with ref results in a tuple element with const reference type (see the fifth example below). For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple<const A&, B>
make_tuple(ref(a), b); // creates tuple<A&, B>
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
make_tuple(cref(ca)); // creates tuple<const A&>
make_tuple(ref(ca)); // creates tuple<const A&>

Array arguments to make_tuple functions are deduced to reference to const types by default; there is no need to wrap them with cref. For example:

make_tuple("Donald", "Daisy");

This creates an object of type tuple<const char (&)[7], const char (&)[6]> (note that the type of a string literal is an array of const characters, not const char*). However, to get make_tuple to create a tuple with an element of a non-const array type one must use the ref wrapper.

Function pointers are deduced to the plain non-reference type, that is, to plain function pointer. A tuple can also hold a reference to a function, but such a tuple cannot be constructed with make_tuple (a const qualified function type would result, which is illegal):

void f(int i);
...
make_tuple(&f); // tuple<void (*)(int)>
...

volnet:
boost::tuple<void (&)(int)> pFTuple3(f);

pFTuple3.get<0>()(30);

tuple<tuple<void (&)(int)> > a(f) // ok
make_tuple(f); // not ok

Accessing tuple elements

Tuple elements are accessed with the expression:

t.get<N>()

or

get<N>(t)

where t is a tuple object and N is a constant integral expression specifying the index of the element to be accessed. Depending on whether t is const or not, get returns the Nth element as a reference to const or non-const type. The index of the first element is 0 and thus N must be between 0 and k-1, where k is the number of elements in the tuple. Violations of these constraints are detected at compile time. Examples:

double d = 2.7; A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A&> ct = t;
...
int i = get<0>(t); i = t.get<0>(); // ok
int j = get<0>(ct); // ok
get<0>(t) = 5; // ok
get<0>(ct) = 5; // error, can't assign to const
...
double e = get<1>(t); // ok
get<1>(t) = 3.14; // ok
get<2>(t) = A(); // error, can't assign to const
A aa = get<3>(t); // error: index out of bounds
...
++get<0>(t); // ok, can be used as any variable

Note! The member get functions are not supported with MS Visual C++ compiler. Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier. Hence, all get calls should be qualified as: tuples::get<N>(a_tuple) when writing code that should compile with MSVC++ 6.0.

Copy construction and tuple assignment

A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible. Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable. For example:

class A {};
class B : public A {};
struct C { C(); C(const B&); };
struct D { operator C() const; };
tuple<char, B*, B, D> t;
...
tuple<int, A*, C, C> a(t); // ok
a = t; // ok

In both cases, the conversions performed are: char -> int, B* -> A* (derived class pointer to base class pointer), B -> C (a user defined conversion) and D -> C (a user defined conversion).

Note that assignment is also defined from std::pair types:

tuple<float, int> a = std::make_pair(1, 'a');

volnet:(Eclipse with MinGW g++
conversion from `std::pair<int, char>' to non-scalar type `boost::tuples::tuple<float, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>' requested

Relational operators

Tuples reduce the operators ==, !=, <, >, <= and >= to the corresponding elementary operators. This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well. The equality operators for two tuples a and b are defined as:

  • a == b iff for each i: ai == bi
  • a != b iff exists i: ai != bi

The operators <, >, <= and >= implement a lexicographical ordering.

Note that an attempt to compare two tuples of different lengths results in a compile time error. Also, the comparison operators are "short-circuited": elementary comparisons start from the first elements and are performed only until the result is clear.

Examples:

tuple<std::string, int, A> t1(std::string("same?"), 2, A());
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
tuple<std::string, long, A> t3(std::string("different"), 3, A());

bool operator==(A, A) { std::cout << "All the same to me..."; return true; }

t1 == t2; // true
t1 == t3; // false, does not print "All the..."

Tiers

Tiers are tuples, where all elements are of non-const reference types. They are constructed with a call to the tie function template (cf. make_tuple):

int i; char c; double d; 
...
tie(i, c, a);

The above tie function creates a tuple of type tuple<int&, char&, double&>. The same result could be achieved with the call make_tuple(ref(i), ref(c), ref(a)).

A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:

int i; char c; double d; 
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout << i << " " << c << " " << d;

This code prints 1 a 5.5 to the standard output stream. A tuple unpacking operation like this is found for example in ML and Python. It is convenient when calling functions which return tuples.

The tying mechanism works with std::pair templates as well:

int i; char c;
tie(i, c) = std::make_pair(1, 'a');
Ignore

There is also an object called ignore which allows you to ignore an element assigned by a tuple. The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that ignore is under the tuples subnamespace):

char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');

Streaming

The global operator<< has been overloaded for std::ostream such that tuples are output by recursively calling operator<< for each element.

Analogously, the global operator>> has been overloaded to extract tuples from std::istream by recursively calling operator>> for each element.

The default delimiter between the elements is space, and the tuple is enclosed in parenthesis. For Example:

tuple<float, int, std::string> a(1.0f,  2, std::string("Howdy folks!");

cout << a;

outputs the tuple as: (1.0 2 Howdy folks!)

The library defines three manipulators for changing the default behavior:

  • set_open(char) defines the character that is output before the first element.
  • set_close(char) defines the character that is output after the last element.
  • set_delimiter(char) defines the delimiter character between elements.

Note, that these manipulators are defined in the tuples subnamespace. For example:

cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a; 

outputs the same tuple a as: [1.0,2,Howdy folks!]

The same manipulators work with operator>> and istream as well. Suppose the cin stream contains the following data:

(1 2 3) [4:5]

The code:

tuple<int, int, int> i;
tuple<int, int> j;

cin >> i;
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
cin >> j;

reads the data into the tuples i and j.

Note that extracting tuples with std::string or C-style string elements does not generally work, since the streamed tuple representation may not be unambiguously parseable.

Performance

All tuple access and construction functions are small inlined one-liners. Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes. Particularly, with a decent compiler there is no performance difference between this code:

class hand_made_tuple { 
A a; B b; C c;
public:
hand_made_tuple(const A& aa, const B& bb, const C& cc)
: a(aa), b(bb), c(cc) {};
A& getA() { return a; };
B& getB() { return b; };
C& getC() { return c; };
};

hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();

and this code:

tuple<A, B, C> t(A(), B(), C());
t.get<0>(); t.get<1>(); t.get<2>();

Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.

Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using non-const reference parameters as a mechanism for returning multiple values from a function. For example, suppose that the following functions f1 and f2 have equivalent functionalities:

void f1(int&, double&);
tuple<int, double> f2();

Then, the call #1 may be slightly faster than #2 in the code below:

int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2

volnet:
int myX = -1;
double myY = -2;
boost::tuple<int, double> f2(2);
boost::tie(myX, myY) = f2; // #2
cout << "myX = " << myX << ", myY = " <<myY << endl;

See [1, 2] for more in-depth discussions about efficiency.

Effect on Compile Time

Compiling tuples can be slow due to the excessive amount of template instantiations. Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the hand_made_tuple class above. However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable. Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently. With the same test programs, memory consumption of compiling increased between 22% to 27%. See [1, 2] for details.

Portability

The library code is(?) standard C++ and thus the library works with a standard conforming compiler. Below is a list of compilers and known problems with each compiler:

Compiler
Problems

gcc 2.95
-

edg 2.44
-

Borland 5.5
Can't use function pointers or member pointers as tuple elements

Metrowerks 6.2
Can't use ref and cref wrappers

MS Visual C++
No reference elements (tie still works). Can't use ref and cref wrappers

Acknowledgements

Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the library. The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.

References

[1] J?rvi J.: Tuples and multiple return values in C++, TUCS Technical Report No 249, 1999.

[2] J?rvi J.: ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism, TUCS Technical Report No 267, 1999.

[3] J?rvi J.:Tuple Types and Multiple Return Values, C/C++ Users Journal, August 2001.


Last modified 2003-09-07

? Copyright Jaakko J?rvi 2001. Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies. This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.



 

posted on 2010-03-25 17:46 volnet 閱讀(1722) 評論(0)  編輯 收藏 引用 所屬分類: C/C++

特殊功能
 
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲激情校园春色| 国内久久婷婷综合| 免费欧美在线| 麻豆成人综合网| 亚洲精品日韩欧美| 欧美日韩一卡| 欧美亚洲免费高清在线观看| 99re成人精品视频| 亚洲一区二区视频在线观看| 在线成人av.com| 性刺激综合网| 亚洲女同在线| 欧美韩日亚洲| 久久综合九九| 黄色av成人| 性欧美办公室18xxxxhd| 一区二区高清视频| 黑人巨大精品欧美一区二区 | 亚洲国产精品一区| 久久久久久网| 欧美国产综合一区二区| 国产精品一区免费视频| 久久天天躁狠狠躁夜夜av| 国产午夜精品麻豆| 国内一区二区三区在线视频| 午夜精品美女久久久久av福利| 一区二区三区国产| 欧美日韩无遮挡| 亚洲一区二区三区高清不卡| 亚洲与欧洲av电影| 国产精品亚洲网站| 久久全球大尺度高清视频| 亚洲国产精品成人综合| 在线看片成人| 另类天堂av| 亚洲人成网站999久久久综合| 日韩网站在线观看| 国产精品免费看| 亚洲一区视频| 久久精品导航| 国产综合香蕉五月婷在线| 欧美aaaaaaaa牛牛影院| 亚洲视频二区| 欧美成年人网| 久久久久久97三级| 午夜精品久久| 亚洲第一在线| 欧美日韩在线播放三区四区| 久久一区二区三区四区| 欧美一区二区三区在线看| 欧美激情免费观看| 欧美与黑人午夜性猛交久久久| 99在线观看免费视频精品观看| 激情综合自拍| 亚洲精品你懂的| 亚洲伦理中文字幕| 亚洲一二三区在线观看| 亚洲视频一二| 欧美一区二区三区四区夜夜大片| 久久一区亚洲| 亚洲综合第一页| 欧美一进一出视频| 久久久精品2019中文字幕神马| 欧美一区二区三区视频| 久久久久久久一区二区三区| 欧美在线视频在线播放完整版免费观看 | 99视频在线精品国自产拍免费观看| 亚洲国产成人精品视频| 亚洲人成在线影院| 亚洲一区综合| 美女图片一区二区| 国产精品久久久久久av下载红粉| 国产精品亚洲第一区在线暖暖韩国| 国产精品日本精品| 最新国产成人在线观看| 欧美一二三视频| 免费观看在线综合| 99视频一区| 久久午夜视频| 欧美日韩国产一区二区三区地区 | 欧美一区二区免费视频| 欧美成人一区二区三区| 午夜在线观看免费一区| 欧美黄色影院| 亚洲经典自拍| 久久久中精品2020中文| 午夜精品久久99蜜桃的功能介绍| 欧美激情在线| 91久久久久久| 另类综合日韩欧美亚洲| 午夜精品一区二区三区在线| 欧美激情一区二区三区在线| 影音先锋久久久| 久久久一本精品99久久精品66| 亚洲综合欧美日韩| 国产情侣久久| 欧美在线观看一区| 亚洲国产欧美日韩| 欧美va亚洲va国产综合| 国产亚洲精品7777| 久久精品毛片| 久久人人看视频| 亚洲精品一线二线三线无人区| 麻豆精品视频| 欧美在线播放| 狠狠色狠狠色综合日日91app| 亚洲视频在线一区| 一区二区三区黄色| 国产视频亚洲精品| 欧美激情网友自拍| 国产精品二区在线观看| 久久岛国电影| 免费成人黄色| 欧美一级一区| 欧美日本亚洲韩国国产| 欧美一区二区三区成人| 久久亚洲精选| 一区二区三区成人精品| 亚洲影院免费观看| 在线观看视频亚洲| 亚洲午夜精品17c| 亚洲成人影音| 欧美一区二区三区的| 99成人免费视频| 久久中文精品| 蘑菇福利视频一区播放| 国产精品私人影院| 99在线精品视频在线观看| 91久久精品久久国产性色也91| 欧美一区二区三区四区在线观看地址 | 亚洲一区二区免费视频| 夜夜嗨av色一区二区不卡| 欧美成人综合一区| 亚洲国产日韩欧美在线99| 在线日本成人| 欧美交受高潮1| 亚洲精品在线电影| 亚洲一区二区三区在线观看视频| 欧美日韩国产欧| 亚洲欧美国产高清| 噜噜噜在线观看免费视频日韩| 国模精品一区二区三区色天香| 午夜在线观看免费一区| 六月婷婷久久| 亚洲香蕉在线观看| 国内精品久久久久久 | 久久动漫亚洲| 亚洲大胆美女视频| 亚洲男女自偷自拍图片另类| 国产精品五月天| 久久久久久久久伊人| 日韩一区二区精品视频| 久久国产精品99久久久久久老狼| 一色屋精品视频在线观看网站| 欧美国产激情| 亚洲一品av免费观看| 男女精品网站| 亚洲欧美卡通另类91av| 亚洲人在线视频| 久久久国产精彩视频美女艺术照福利 | 亚洲欧洲精品一区二区三区波多野1战4 | 久久亚洲国产精品日日av夜夜| 亚洲欧洲一二三| 国产色婷婷国产综合在线理论片a| 免费观看日韩| 久久综合精品一区| 欧美一级免费视频| 欧美一级大片在线免费观看| 亚洲精品三级| 亚洲黄色影院| 亚洲国产成人av好男人在线观看| 久久久久久欧美| 久久精品免费电影| 久久午夜av| 久久久久久久久久码影片| 久久精品国产视频| 久久亚洲国产精品日日av夜夜| 久久精品夜夜夜夜久久| 久久久www| 亚洲国产一区二区视频| 欧美激情第4页| 亚洲国产日韩一区二区| 亚洲三级电影全部在线观看高清| 亚洲国产精品久久| 99精品福利视频| 欧美在线短视频| 女人香蕉久久**毛片精品| 欧美日韩的一区二区| 国产精品久久久久aaaa九色| 国产一区二区三区的电影| 亚洲日韩欧美视频一区| 亚洲视频一二区| 久久手机精品视频| 日韩视频在线一区| 久久久久久香蕉网| 国产精品sss| 91久久国产综合久久蜜月精品| 亚洲图片在线| 欧美国产综合一区二区| 国产在线视频不卡二|