• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 14,  comments - 11,  trackbacks - 0
                 摘要:   閱讀全文
            posted @ 2011-04-05 10:46 路修遠 閱讀(1345) | 評論 (0)編輯 收藏
                  bfs的好題目!
                  開始想到用優先隊列,無情的還是過了, 只不過時間用了2000ms多,差點就掛了~杯具的優先
                  后來一想,其實可以直接bfs, 有情的是意料之外的沒有出現TE,而是AC,徹底無語的是只用了500ms多!!!!
                  大呼優先之哀哉……
                  至于bfs的做法如下:
                        1,開始點進棧
                        2,開始點能直接到達(不花時間的)的所有的點進棧
                        3,分兩步
                           3.1 開始點不能直接到達(要時間)的點進棧
                           3.2 將這個點能直接到達(不花時間的)的所有的點進棧
                           3.3 跳轉到3
                       4 跳轉到1
                     注:開始點為當前出棧的第一個點
                    不明白這個過程的可以看代碼(雖然代碼有點……,還可以進一步簡化, 以后不能老想著優先了,誰優先誰杯具,當然不是說我們的廣大女同胞……)
              1 #include <iostream>
              2 #include <queue>
              3 using namespace std;
              4 struct node
              5 {
              6        int x, y, time;
              7        /*friend bool operator < (node a, node b)
              8        {
              9               return a.time > b.time;
             10        }*/
             11 };
             12 int n, m;
             13 int xi[8= {-1-101110-1};
             14 int yi[8= {01110-1-1-1};
             15 char map[1005][1005];
             16 bool vist[1005][1005];
             17 bool check(int dx, int dy)
             18 {
             19      if (dx >= 0 && dy >=0 && dx < n && dy < m) return true;
             20      return false;
             21 }
             22 queue <node> q;
             23 int bfs(node now, node end)
             24 {
             25     while (!q.empty())q.pop();
             26     now.time = 0;
             27     q.push(now);
             28     
             29     for (int i = 0; i < n; i++)
             30     for (int j = 0; j < m; j++)
             31         vist[i][j] = false;
             32     vist[now.x][now.y] = true;
             33     node next, tmp;
             34     bool flag = false;
             35     while (!q.empty())
             36     {
             37           now = q.front();
             38           tmp = now;
             39           if (now.x == end.x && now.y == end.y) return now.time;
             40           q.pop();
             41           flag = false;
             42           while (1)
             43           {
             44                 next.x = tmp.x + xi[map[tmp.x][tmp.y]-'0'];
             45                 next.y = tmp.y + yi[map[tmp.x][tmp.y]-'0'];
             46                 if (check(next.x, next.y) && !vist[next.x][next.y])
             47                 {
             48                    if (next.x == end.x && next.y == end.y) return tmp.time;
             49                    next.time = tmp.time;
             50                    vist[next.x][next.y] = true;
             51                    q.push(next);
             52                    tmp = next;
             53                 }else break;
             54           }
             55           for (int i = 0; i < 8; i++)
             56           {
             57               next.x = now.x + xi[i];
             58               next.y = now.y + yi[i];
             59               if (check(next.x, next.y) && !vist[next.x][next.y])
             60               {
             61                  if (map[now.x][now.y] - '0' == i) next.time = now.time;
             62                  else next.time = now.time + 1;
             63                  if (next.x == end.x && next.y == end.y) return next.time;
             64                  vist[next.x][next.y] = true;
             65                  q.push(next);
             66                  tmp = next;
             67                  while (1)
             68                  {
             69                        next.x = tmp.x + xi[map[tmp.x][tmp.y]-'0'];
             70                        next.y = tmp.y + yi[map[tmp.x][tmp.y]-'0'];
             71                        if (check(next.x, next.y) && !vist[next.x][next.y])
             72                        {
             73                           if (next.x == end.x && next.y == end.y) return tmp.time;
             74                           next.time = tmp.time;
             75                           vist[next.x][next.y] = true;
             76                           q.push(next);
             77                           tmp = next;
             78                        }else break;
             79                   }
             80               }
             81           }
             82     }
             83     return 0;
             84 }
             85 int main()
             86 {
             87     while (scanf("%d%d"&n, &m) != EOF)
             88     {
             89           int i, j;
             90           for (i = 0; i < n; i++)
             91               scanf("%s", map[i]);
             92           int T;
             93           scanf("%d"&T);
             94           node now, end;
             95           for (i = 0; i < T; i++)
             96           {
             97               scanf("%d%d%d%d"&now.x, &now.y, &end.x, &end.y);
             98               now.time = 0;
             99               now.x --;
            100               now.y --;
            101               end.x --;
            102               end.y --;
            103               if (now.x == end.x && now.y == end.y)
            104               {
            105                  printf("0\n");
            106               }else printf("%d\n", bfs(now, end));
            107           }
            108     }
            109 return 0;
            110 }
            111 

            posted @ 2012-04-22 20:23 路修遠 閱讀(1335) | 評論 (0)編輯 收藏
                  單純的bfs(),當然你也可以用dfs,只要你不怕超時或者你的剪枝夠強大
                  最好開一個三維的數組,記錄每一個格子的每一個方向上的最小值,直到bfs完成
                  具體看代碼,不做過多的解釋。
              1 #include <iostream>
              2 #include <queue>
              3 using namespace std;
              4 struct node
              5 {
              6        int x, y;
              7        int step, dir;
              8 };
              9 int n, m;
             10 int xi[4= {01-10};
             11 int yi[4= {100-1};
             12 int vist[82][82][4];
             13 char map[82][82];
             14 node start;
             15 queue <node> q;
             16 bool check(int dx, int dy)
             17 {
             18      if(dx >= 1 && dx <= n && dy >= 1 && dy <= m) return true;
             19      else return false;
             20 }
             21 bool find(node a)
             22 {
             23      if ((a.x == 1 || a.x == n || a.y == 1 || a.y == m)) return true;
             24      else return false;
             25 }
             26 int bfs()
             27 {
             28      while (!q.empty())q.pop();
             29      memset(vist, 0sizeof(vist));
             30      start.dir = -1;
             31      start.step = 0;
             32      q.push(start);
             33      node now, next;
             34      bool flag = true;
             35      int tmp;
             36      while (!q.empty())
             37      {
             38            now = q.front();
             39            q.pop();
             40            if (find(now)) return now.step;
             41            
             42            flag = false;
             43            for (int i = 0 ; i < 4; i++)
             44            {
             45               if (now.dir == i) continue;
             46               if (now.dir >=0 && 3-now.dir == i) continue;
             47               next.x = now.x + xi[i];
             48               next.y = now.y + yi[i];
             49               next.step = now.step + 1;
             50               if (check(next.x, next.y) && map[next.x][next.y] == '.' )
             51               {
             52                  if (vist[next.x][next.y][i] == 0)  
             53                  {
             54                     vist[next.x][next.y][i] = next.step;
             55                     next.dir = i;
             56                     q.push(next);
             57                  }
             58                  else if (vist[next.x][next.y][i] > next.step)
             59                  {
             60                     vist[next.x][next.y][i] = next.step;
             61                     next.dir = i;
             62                     q.push(next);
             63                  }
             64                  flag = true;
             65               }
             66            }
             67            if (!flag)
             68            {
             69               int i = now.dir;
             70               if (i < 0return 0;
             71               next.x = now.x + xi[i];
             72               next.y = now.y + yi[i];
             73               next.step = now.step + 1;
             74               if (check(next.x, next.y) && map[next.x][next.y] == '.' )
             75               {
             76                  if (vist[next.x][next.y][i] == 0)  
             77                  {
             78                     vist[next.x][next.y][i] = next.step;
             79                     next.dir = i;
             80                     q.push(next);
             81                  }
             82                  else if (vist[next.x][next.y][i] > next.step)
             83                  {
             84                     vist[next.x][next.y][i] = next.step;
             85                     next.dir = i;
             86                     q.push(next);
             87                  }
             88                  flag = true;
             89               }
             90            }
             91      }
             92      return -1;
             93 }
             94 int main()
             95 {
             96     int cas;
             97     scanf("%d"&cas);
             98     while (cas--)
             99     {
            100           scanf("%d%d"&n, &m);
            101           int i, j;
            102           for (i = 1; i <= n; i++)
            103               scanf("%s", map[i]+1);
            104           for (i = 1; i <= n; i++)
            105           for (j = 1; j <= m; j++)
            106           {
            107               if (map[i][j] == '@')
            108               {
            109                  start.x = i;
            110                  start.y = j;
            111                  map[i][j] = '.';
            112               }
            113           }
            114           int ans = bfs();
            115           printf("%d\n", ans);
            116     }
            117 return 0;
            118 }
            119 
            posted @ 2012-04-13 18:34 路修遠 閱讀(1310) | 評論 (0)編輯 收藏
            題目大意:
               去掉給定的邊,看每一個點是否能從別的點到達!
                如果能夠到達,則求出對于每一個點到其他所有的點最短距離之和,將這些和相加就是最后的結果

               解題思路:
                  對每一個點求一次單源最短路,然后求和,相加的到最后的結果……
                  但,算一下時間復雜度: 復雜度是O(M*N*M)。由于M*N*M=3000*100*3000=9*108,不可能AC

                  所以,需要我們另辟他徑。網上有說建什么最短路徑樹,這個我不懂……
                  我的思路是:引用前面的思路,對每一個點求一次最短路,并將其求和,保存在一個數組里頭,定為sum[i],i表示著一個點到所有其他點最短路之和。并將這些和相加 ans = sum[1]  + …… + sum[n]; 
                  然后,刪除一條邊,其頂點暫定為u,v,對這條邊的一個頂點u在一次求最短路,如果這個點,不能到達這條邊的另一個點v,則 直接輸出INF
                  如果,能夠到達,則對v也求一次最短路,對于u,v兩點來說,求得u到每一個點的最短路之和sum_u,求得v到每一個點的最短路之和sum_v,
                  最后結果為: ans = ans + sum_u + sum_v - sum[u] - sum[v];
                  ans為最后答案(千萬記住是每一組的,因為有m條邊)
                  具體看代碼:
            http://acm.hdu.edu.cn/showproblem.php?pid=2433
            時間是 953ms
                     
              1 #include <iostream>
              2 #include <queue>
              3 using namespace std;
              4 const int SIZE = 102;
              5 const int INF = 1 << 30;
              6 struct node
              7 {
              8        int v, w, next;
              9 }map[SIZE * SIZE];
             10 
             11 int head[SIZE], use;
             12 int num[SIZE * 30];
             13 int sum[SIZE];
             14 
             15 void add(int u, int v, int w)
             16 {
             17      map[use].v = v;
             18      map[use].w = w;
             19      map[use].next = head[u];
             20      head[u] = use ++;
             21 }
             22 void init()
             23 {
             24      use = 0;
             25      memset(head, -1sizeof(head));
             26      memset(sum, 0sizeof(sum));
             27 }
             28 
             29 queue <int> q;
             30 bool vist[SIZE];
             31 int dis[SIZE];
             32 
             33 int spfa(int s)
             34 {
             35      while (!q.empty()) q.pop();
             36      
             37      for (int i = 0; i < SIZE ; i ++)  dis[i] = INF;
             38      
             39      memset(vist, falsesizeof(vist));
             40      dis[s] = 0;
             41      vist[s] = true;
             42      q.push(s);
             43      int ans = 0;
             44      while (!q.empty()) 
             45      {
             46            int u = q.front();
             47            q.pop();
             48            vist[u] = false;
             49            ans += dis[u];
             50            for (int i = head[u]; i != -1; i = map[i].next)
             51            {
             52                int v = map[i].v;
             53                if (dis[v] > dis[u] + map[i].w)
             54                {
             55                   dis[v] = dis[u] + map[i].w;
             56                   if (!vist[v])
             57                   {
             58                      vist[v] = true;
             59                      q.push(v);
             60                   }
             61                }
             62            }
             63      }
             64      return ans;
             65 }
             66 int main()
             67 {
             68      int n, m;
             69      while (scanf("%d%d"&n, &m) != EOF)
             70      {
             71            int i, j, k;
             72            int u, v;
             73            init();
             74            memset(num, 0sizeof(num));
             75            for (i = 1; i <= m; i++)
             76            {
             77                scanf("%d%d"&u, &v);
             78                num[i] = use;
             79                add(u, v, 1);
             80                add(v, u, 1);
             81            }
             82            int ans = 0;
             83            for (i = 1; i <= n; i++)  
             84            {
             85                sum[i] = spfa(i);
             86                ans += sum[i];
             87            }
             88            int tmp = ans;
             89            for (i = 1; i <= m; i++)
             90            {
             91                map[num[i]].w = INF;
             92                map[num[i]^1].w = INF;
             93                
             94                ans = tmp;
             95                ans += spfa(map[num[i]].v);
             96                
             97                if (dis[map[num[i]^1].v] == INF) 
             98                {
             99                   printf("INF\n");
            100                }
            101                else 
            102                {
            103                     ans += spfa(map[num[i]^1].v);
            104                     ans = ans - sum[map[num[i]].v] - sum[map[num[i]^1].v];
            105                     printf("%d\n", ans);
            106                }
            107                map[num[i]].w = 1;
            108                map[num[i]^1].w = 1;
            109            }
            110      }
            111 return 0;
            112 }
            113 

               
            posted @ 2012-03-09 15:35 路修遠 閱讀(1874) | 評論 (8)編輯 收藏
                                                                                                            Going Home

            Description

            On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

            Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.

            You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

            Input

            There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

            Output

            For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

            Sample Input

            2 2
            .m
            H.
            5 5
            HH..m
            .....
            .....
            .....
            mm..H
            7 8
            ...H....
            ...H....
            ...H....
            mmmHmmmm
            ...H....
            ...H....
            ...H....
            0 0
            

            Sample Output

            2
            10
            28
            KM算法!
            
            其實這個題求的是最小權匹配,,但有些題目最小不一定好求,于是我們可以換一種思維,將有所的距離變成負的,那么我們要求的就是最大權匹配!(在一位大牛的指點下)
            廢話不多說,看程序:
              1 #include<iostream>
              2 using namespace std;
              3 #define Inf 10000000;
              4 int map[105][105];
              5 int slack[105];
              6 int lx[105],ly[105];
              7 bool x[105],y[105];
              8 int link[105];
              9 int n,m;
             10 char mm[105][105];
             11 bool dfs(int v)
             12 {
             13      x[v]=true;
             14      int t;
             15      for (int i=0;i<m;i++)
             16      {
             17          if (!y[i])
             18          {
             19             t=lx[v]+ly[i]-map[v][i];
             20             if (t==0)
             21             {
             22                y[i]=true;
             23                if (link[i]==-1||dfs(link[i]))
             24                {
             25                   link[i]=v;
             26                   return true;
             27                }
             28             }
             29             else slack[i]=min(slack[i],t);
             30          }
             31      }
             32      return false;
             33 }
             34 void KM()
             35 {
             36      int i,j,k;
             37      memset(link,-1,sizeof(link));
             38      for (i=0;i<=m;i++)
             39      {
             40          lx[i]=-Inf;
             41          ly[i]=0;
             42      }
             43      for (i=0;i<m;i++)
             44      {
             45          while (1)
             46          {
             47                memset(x,0,sizeof(x));
             48                memset(y,0,sizeof(y));
             49                
             50                for (j=0;j<m;j++) slack[j]=Inf;
             51                    
             52                if (dfs(i))break;
             53                
             54                int d=Inf;
             55                for (j=0;j<m;j++)
             56                    if (!y[j])d=min(slack[j],d);
             57                    
             58                for (j=0;j<m;j++)
             59                {
             60                    if (x[j])lx[j]-=d;
             61                    if (y[j])ly[j]+=d;
             62                }
             63                for (j=0;j<m;j++)
             64                    if (!y[j])slack[j]-=d;
             65          }
             66      }
             67 }
             68 int main()
             69 {
             70     int i,j,k,t,l,v;
             71     while (cin>>k>>t)
             72     {
             73           if (k+t==0)break;
             74           for (i=1;i<=k;i++)
             75           for (j=1;j<=t;j++)
             76               scanf(" %c",&mm[i][j]);
             77           memset(map,0,sizeof(map));
             78           n=0,m=0;
             79           for (i=1;i<=k;i++)
             80           for (j=1;j<=t;j++)
             81           {
             82               if (mm[i][j]=='H')
             83               {
             84                  n=0;
             85                  for (l=1;l<=k;l++)
             86                  for (v=1;v<=t;v++)
             87                  {
             88                      if (mm[l][v]=='m')
             89                      {
             90                         map[m][n]=-(abs(i-l)+abs(j-v));
             91                         n++;
             92                      }
             93                  }
             94                  m++;
             95               }
             96           }
             97           KM();
             98           int sum=0;
             99           for (i=0;i<m;i++)
            100               sum+=map[link[i]][i];
            101           cout<<0-sum<<endl;
            102     }
            103 return 0;
            104 }
            105  
            106 
            posted @ 2011-04-19 13:54 路修遠 閱讀(1434) | 評論 (0)編輯 收藏
                 摘要:   閱讀全文
            posted @ 2011-04-05 10:46 路修遠 閱讀(1345) | 評論 (0)編輯 收藏

            沒什么好說的,直接匈牙利算法

            #include<iostream> 
            using namespace std;
            int n,m;//n為x集合,m為y集合 
            int map[305][305];//map[x][y]表示x,y兩點之間有邊相連 
            bool visit[305];//記錄m中的i節點是否被訪問過 
            int link[305];//記錄當前n中的i節點是否與 j節點相連 
            bool dfs(int a)
            {
                 
            int i;
                 
            for (i=1;i<=n;i++)
                 {
                     
            if (map[a][i]&&!visit[i])
                     {
                        visit[i]
            =true;
                        
            if (link[i]==0||dfs(link[i]))
                        {
                           link[i]
            =a;
                           
            return true;
                        }
                     }
                 }
                 
            return false;
            }
            int find()
            {
                 
            int sum=0;
                 
            for (int i=1;i<=n;i++)
                 {
                     memset(visit,
            0,sizeof(visit));
                     
            if (dfs(i))sum++;
                 }
                 
            return sum;//最大匹配數 
            }
            int main()
            {
                
            int t,i,j,k,x;
                
            while (scanf("%d%d",&n,&m)!=EOF)
                {
                      memset(map,
            0,sizeof(map));
                      memset(link,
            0,sizeof(link));
                      
            for (i=1;i<=n;i++)
                      {
                          scanf(
            "%d",&j);
                          
            for (k=1;k<=j;k++)
                          {
                              scanf(
            "%d",&x);
                              map[i][x]
            =1;
                          }  
                      }
                      cout
            <<find()<<endl;
                }
            return 0;
            }
            posted @ 2011-04-04 09:50 路修遠 閱讀(1258) | 評論 (0)編輯 收藏

            其實這個題,和我上次講的那個連連看一樣!只不過是字符變成了整型而已!
            還是貼一下關鍵代碼吧(⊙o⊙)~~

              1 bool search(int x1,int y1,int x2,int y2,int n,int m)
              2 {
              3        memset(gk,0,sizeof(gk));
              4        int t=game[x2][y2];
              5        game[x2][y2]=0;
              6        gk[x1][y1]=1;
              7        
              8        //對game[x1][y1]四個方向是空格的標為1 
              9        for (int i=x1-1;i>=1;i--)
             10        {
             11              if(game[i][y1]==0)gk[i][y1]=1;
             12              else  break;
             13        }
             14       for (int j=x1+1;j<=n;j++){
             15                if(game[j][y1]==0)gk[j][y1]=1;
             16               else break;
             17             }
             18      
             19       for (int i=y1-1;i>=1;i--){
             20            if(game[x1][i]==0)gk[x1][i]=1;
             21           else  break;
             22         } 
             23      for (int i=y1+1;i<=m;i++){
             24            if(game[x1][i]==0)gk[x1][i]=1;
             25           else  break;
             26           } 
             27     
             28      if  (gk[x2][y2]>0&&gk[x2][y2]<4)
             29      {
             30         game[x2][y2]=t; 
             31         return true;
             32      }
             33      //對gk[i][j]為1的四個方向是空格的標為2 
             34     for (int i=1;i<=n;i++)
             35     for (int j=1;j<=m;j++)
             36           if  (gk[i][j]==1)
             37           {
             38                 for (int k=i-1;k>=1;k--)
             39                 {
             40                  if  (game[k][j]==0){
             41                      if(gk[k][j]==0)gk[k][j]=2;
             42                      }
             43                  else break;
             44                  }             
             45              for (int k=i+1;k<=n;k++){
             46                 if  (game[k][j]==0){
             47                       if(gk[k][j]==0)gk[k][j]=2;
             48                      }
             49                  else break;       
             50                  }
             51              
             52              for (int k=j-1;k>=1;k--){
             53                  if  (game[i][k]==0){
             54                       if(gk[i][k]==0)gk[i][k]=2;
             55                      }
             56                   else break;       
             57                  }
             58              for (int k=j+1;k<=m;k++){
             59                 if  (game[i][k]==0){
             60                       if(gk[i][k]==0)gk[i][k]=2;
             61                      }
             62                   else break;       
             63                  }
             64          }
             65        
             66     if  (gk[x2][y2]>0&&gk[x2][y2]<4)
             67      {
             68         game[x2][y2]=t; 
             69         return true;
             70      }  
             71      //對gk[i][j]為2的四個方向是空格的標為3
             72      for (int i=1;i<=n;i++)
             73      for (int j=1;j<=m;j++)
             74      if  (gk[i][j]==2){
             75          for (int k=i-1;k>=1;k--)
             76          {
             77                  if  (game[k][j]==0)
             78                  {
             79                      if(gk[k][j]==0)gk[k][j]=3;
             80                  }
             81                  else break;
             82          }             
             83          for (int k=i+1;k<=n;k++)
             84          {
             85                  if  (game[k][j]==0)
             86                  {
             87                       if(gk[k][j]==0)gk[k][j]=3;
             88                  }
             89                   else break;       
             90          }
             91              
             92            for (int k=j-1;k>=1;k--)
             93            {
             94              if  (game[i][k]==0){
             95                      if(gk[i][k]==0)gk[i][k]=3;
             96                      }
             97                  else break;       
             98              }
             99              for (int k=j+1;k<=m;k++)
            100              {
            101                  if  (game[i][k]==0)
            102                  {                                           
            103                      if(gk[i][k]==0)gk[i][k]=3;
            104                  }
            105                   else break;       
            106              }
            107            }       
            108               
            109          game[x2][y2]=t;
            110          if(gk[x2][y2]>0&&gk[x2][y2]<4)return true;
            111          if(gk[x2][y2]==0return false;  
            112        }
            posted @ 2010-11-24 16:07 路修遠 閱讀(1814) | 評論 (0)編輯 收藏
            其實這個題是一個簡單的搜索問題,理解了很好做!注意4代表時間復原就行了!具體的在程序里頭,這里就不多說了,深知多說無益,還是要多練的!
             1 #include<iostream>
             2 using namespace std;
             3 int map[12][12],tp[12][12],tt[12][12];
             4 int n,m;
             5 int Min=0xffffff,sum=0;
             6 int x[4]={1,0,0,-1};
             7 int y[4]={0,1,-1,0};
             8 bool f=true;
             9 //數組的交換 
            10 void fun(int a[12][12],int b[12][12])
            11 {
            12      for (int i=1;i<=n;i++)
            13      for (int j=1;j<=n;j++)
            14          a[i][j]=b[i][j];
            15 
            16 
            17 void dfs(int x1,int y1,int sum,int p)
            18 {
            19      if(map[x1][y1]==3&&p>=0)
            20      {
            21         // 這里要注意,我是從5開始的,搜到3時,p應該是0以上,
            22         //剛開始是沒搞清楚,p大于0,wa了幾次,就是沒找到錯誤! 
            23         if(Min>sum)Min=sum;
            24         //cout<<sum<<endl;
            25         f=false;
            26         return;
            27      }
            28      int dx,dy;
            29      for (int i=0;i<4;i++)
            30      {
            31          dx=x1+x[i];  dy=y1+y[i];
            32          if (map[dx][dy]!=0&&tp[dx][dy]==0&&p>=1)
            33          {
            34             if(map[dx][dy]==4)
            35             {
            36                map[dx][dy]=0;
            37                int temp=p;
            38                p=5;
            39               // cout<<p<<' '<<dx<<' '<<dy<<endl;
            40               //輸出路徑,偏于查找當前的坐標位置和剩余時間p 
            41                fun(tt,tp);
            42                memset(tp,0,sizeof(tp));
            43                //到4是可以往回搜的,所以前面的走過的路徑應該移除標記
            44                //用數組tt記住前面走過的路徑,以便于后面的搜索 
            45                tp[dx][dy]=1;
            46                dfs(dx,dy,sum+1,p);
            47                //出來混的,是要還的!這里也一樣! 
            48                map[dx][dy]=4;
            49                tp[dx][dy]=0;
            50                p=temp;
            51                fun(tp,tt);
            52             }
            53             else
            54             {
            55                 tp[dx][dy]=1;
            56                 //cout<<"->"<<p<<' '<<dx<<' '<<dy<<endl;
            57                 //輸出路徑,偏于查找當前的坐標位置和剩余時間p 
            58                 dfs(dx,dy,sum+1,p-1);
            59                 tp[dx][dy]=0;
            60             }   
            61          }    
            62      }
            63 }
            64 int main()
            65 {
            66     int t;
            67     cin>>t;
            68     while (t--)
            69     {
            70           memset(map,0,sizeof(map));
            71           memset(tp,0,sizeof(tp));
            72           cin>>n>>m;
            73           f=true;
            74           int x1,y1,x2,y2;
            75           for (int i=1;i<=n;i++)
            76           for (int j=1;j<=m;j++)
            77           {
            78               cin>>map[i][j];
            79               if(map[i][j]==2)x1=i,y1=j;
            80               //if(map[i][j]==3)x2=i,y2=j;                   
            81           }
            82           Min=0xffffff,sum=0;
            83           int p=5;
            84           map[x1][y1]=0;
            85           dfs(x1,y1,sum,5);
            86           if(!f)cout<<Min<<endl;
            87           else cout<<-1<<endl;
            88     }
            89 return 0;
            90 }
            91 
            posted @ 2010-11-09 16:59 路修遠 閱讀(1495) | 評論 (0)編輯 收藏

            “九宮填數“也叫“九方數”,古代稱為“九宮算”。九宮填數是將九個有效數字填在九個方位格子里,要使每行、每列和每條對角線上的和都相等,即:橫的三個數之和、豎的三個數之和與斜的三個數之和,都相等。在解這個題之前,先把九宮的方位問題明確了,以便講行具體的闡述。

              這個方位的確定與看地圖的方位是一致的。由于要把1—9這九個數填在適當的格子里,這九個數之和是45,無論是橫、豎、斜都是三個數,把45平均分成三行,每行三個數的和都是15(包括橫、豎、斜)。每三個數的情況:橫有3種,豎有3種,斜有2種,共8種。




            只要知道三個數就可以枚舉所有的數了;

             

            I

            J

             

             

            5

             

             

             

             

             1 #include<iostream>
             2 using namespace std;
             3 int b[10],a[10];
             4 int main(){
             5     int f = 0;
             6     for (int i=1;i<10;i++){        
             7         if(i!=5)b[1]=i;
             8         for (int j=1;j<10;j++)
             9         {
            10             b[5= 5;
            11              if(j!=i&&j!=5&&i!=5){
            12               b[2= j;
            13               b[8= 15 - b[2- b[5];
            14               b[3= 15 - b[1- b[2];
            15               b[9= 15 - b[1- b[5];
            16               b[7= 15 - b[3- b[5];
            17               b[4= 15 - b[1- b[7];              
            18               b[6= 15 - b[3- b[9];
            19               if(b[4]+b[5]+b[6]==15&&b[7]+b[8]+b[9]==15)
            20               {
            21                     f = 0;
            22                     memset(a,0,sizeof(a));
            23                   for (int k=1;k<10;k++)  a[b[k]]++;
            24                      for (int k=1;k<10;k++)  if(a[k]<=0||a[k]>1){f = 1;break;}
            25                   if(f==0){ 
            26                       for (int k=1;k<10;k++)
            27                       {
            28                            cout<< b[k] <<' ';
            29                            if(k%3==0)cout << endl;
            30                         }
            31                     cout << endl;
            32                     }
            33                    }
            34             }
            35          }        
            36      }
            37     system("pause");
            38     return 0;
            39     }
            40 
            posted @ 2010-06-30 08:14 路修遠 閱讀(487) | 評論 (0)編輯 收藏
            Problem Description
            RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

            > choose two large prime integer p, q
            > calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
            > choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
            > calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

            You can encrypt data with this method :

            C = E(m) = me mod n

            When you want to decrypt data, use this method :

            M = D(c) = cd mod n

            Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

            Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
             

            Input
            Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks.
             

            Output
            For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
             

            Sample Input
            101 103 7 11 7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
             

            Sample Output
            I-LOVE-ACM.
            以為要數組,想想,不是那么回事!

            挺簡單的~~
             1 #include<iostream>
             2 using namespace std;
             3 int main(){
             4     int p,q,e,t;
             5     while (cin>>p>>q>>e>>t)
             6     {
             7            int n = p*q,fn = (p-1)*(q-1);
             8            int d =1;
             9            while ((d*e)%fn!=1)d++;
            10           int c;
            11           for (int i=0;i<t;i++)
            12           {
            13                  cin>>c;
            14                  int temp=1;
            15                  for (int j=1;j<=d;j++)
            16                  {
            17                      temp*=c;
            18                      temp%=n;
            19                   }
            20                 cout<<char(temp); 
            21                  }
            22            cout<<endl;
            23            }    
            24     return 0;
            25     }
            posted @ 2010-06-26 18:59 路修遠 閱讀(463) | 評論 (0)編輯 收藏
            僅列出標題  下一頁
            <2010年7月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            轉載,請標明出處!謝謝~~

            常用鏈接

            留言簿(1)

            隨筆分類

            隨筆檔案

            文章檔案

            搜索

            •  

            最新評論

            • 1.?re: HDU 2433 最短路
            • @test
              的確這組數據應該輸出20的
            • --YueYueZha
            • 2.?re: HDU 2433 最短路
            • 這方法應該不對。 看下面這組數據
              4 4
              1 2
              2 3
              3 4
              2 4

              畫個圖,刪去最后一條邊 2 4 后的結果應該是20,但是此方法的輸出是19
            • --test
            • 3.?re: HDU 2433 最短路
            • ans = ans + sum_u + sum_v - sum[u] - sum[v],
              這個公式不是很理解啊,不知道博主怎么想的啊,謝謝咯
            • --姜
            • 4.?re: HDU 2433 最短路
            • @attacker
              the i-th line is the new SUM after the i-th road is destroyed
            • --路修遠
            • 5.?re: HDU 2433 最短路
            • 你這樣可以AC????刪除<U,V>不僅改變 u,v最短路啊、、、求解
            • --attacker

            閱讀排行榜

            評論排行榜

            久久国产高清一区二区三区| 狠狠久久综合| 久久人人爽人人爽人人片av麻烦| 人妻少妇精品久久| 精品久久亚洲中文无码| 99久久中文字幕| 女同久久| 国产成人精品三上悠亚久久| 国内精品久久久久久久久| 亚洲日本va午夜中文字幕久久| 久久午夜无码鲁丝片秋霞| 精品免费久久久久久久| 午夜视频久久久久一区 | 久久精品国产亚洲一区二区| 久久精品中文字幕第23页| 久久久久国产精品人妻| 99久久www免费人成精品| 久久无码专区国产精品发布 | 久久久WWW成人免费毛片| 久久精品国产99国产精品导航| 国产精品岛国久久久久| 久久精品日日躁夜夜躁欧美| 51久久夜色精品国产| 一本久久a久久精品亚洲| 久久精品国产99久久丝袜| 久久国产精品久久久| 亚洲精品无码成人片久久| 久久影视国产亚洲| 久久精品国产清自在天天线| 好久久免费视频高清| 久久久久99精品成人片直播| 国产一区二区久久久| 香蕉久久永久视频| 很黄很污的网站久久mimi色| 91麻精品国产91久久久久| 久久精品国产免费| 丰满少妇人妻久久久久久| 久久精品aⅴ无码中文字字幕不卡| 区久久AAA片69亚洲| 2019久久久高清456| 久久久久久久久久久久久久|