• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            dp_1_M

            最近開始刷奇奇神的dp專題,呃,我是弱菜,啥都不會,現在才開始刷dp,
            在nocLyt神的熏陶下,覺著區間dp有些感覺了
            不過還是調半天才調出來
            今天做的這個
            M - Optimal Array Multiplication Sequence
            Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

            Description


             Optimal Array Multiplication Sequence 

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a tex2html_wrap_inline67 array, and B is a tex2html_wrap_inline71 array, it will take tex2html_wrap_inline73 , or 3000 multiplications to compute the C array.

            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a tex2html_wrap_inline103 array, Y is a tex2html_wrap_inline67 array, and Z is a tex2html_wrap_inline111 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

            (X Y) Z

            • tex2html_wrap_inline119 multiplications to determine the product (X Y), a tex2html_wrap_inline123 array.
            • Then tex2html_wrap_inline125 multiplications to determine the final result.
            • Total multiplications: 4500.

            X (Y Z)

            • tex2html_wrap_inline133 multiplications to determine the product (Y Z), a tex2html_wrap_inline139 array.
            • Then tex2html_wrap_inline141 multiplications to determine the final result.
            • Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplications required.

            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.

            Output

            Assume the arrays are named tex2html_wrap_inline157 . Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.

            Sample Input

            3 1 5 5 20 20 1 3 5 10 10 20 20 35 6 30 35 35 15 15 5 5 10 10 20 20 25 0

            Sample Output

            Case 1: (A1 x (A2 x A3)) Case 2: ((A1 x A2) x A3) Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

            雖說這個是水題吧,但好歹是自己用心寫的一個dp,就放在這了,

            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #define inf 0x7ffffff
            #define maxn 15
            int f[maxn][maxn],path[maxn][maxn];
            int l[maxn],r[maxn];
            int n;
            int min(int a,int b)
            {
                
            return a<b?a:b;
            }
            void print(int h,int t)
            {
                printf(
            "(");
                
            if (t-h==1)
                {
                    printf(
            "A%d x A%d",h,t);
                }
                
            else
                {
                    
            int tmp=path[h][t];
                    
            if(tmp-h==0)
                    {
                        printf(
            "A%d x ",h);
                         
            if(t-tmp-1==0) printf("A%d",t);else print(tmp+1,t);
                    }
                    
            else if(t-tmp==0)
                    {
                        
                        
            if(h-tmp-1==0) printf("A%d",h);else print(h,tmp-1);
                        printf(
            " x A%d",t);
                    }
                    
            else
                    {
                        
            if(h-tmp==0) printf("A%d",h);else print(h,tmp);
                        printf(
            " x ");
                        
            if(t-tmp-1==0) printf("A%d",t);else print(tmp+1,t);
                    }
                }
                printf(
            ")");
            }
            int main()
            {
                
            int i,j,k,times;
                times
            =0;
                
            while(scanf("%d",&n)!=EOF&&n!=0)
                {
                    times
            ++;
                    
            for(i=1; i<=n; i++) scanf("%d%d",&l[i],&r[i]);
                    memset(f,
            0,sizeof(f));
                    
            for(i=1; i<=n-1; i++)
                        f[i][i
            +1]=l[i]*r[i]*r[i+1];//,printf("%d %d %d\n",i,i+1,f[i][i+1]);
                    for(i=n-2; i>=1; i--)
                    {
                        
            for(j=i+2; j<=n; j++)
                        {
                            f[i][j]
            =inf;
                            
            for(k=i; k<=j; k++)
                                
            if(f[i][k]+f[k+1][j]+l[i]*r[k]*r[j]<f[i][j])
                                {
                                    
            //printf("%d %d %d %d %d %d\n",i,k,j,f[i][k],f[k+1][j],l[i]*r[k]*r[j]);
                                    f[i][j]=f[i][k]+f[k+1][j]+l[i]*r[k]*r[j];
                                    path[i][j]
            =k;
                                }
                            
            //printf("%d %d %d %d\n",i,j,f[i][j],path[i][j]);
                        }
                    }
                    
            //printf("%d\n",f[1][n]);
                    printf("Case %d: ",times);
                    print(
            1,n);
                    printf(
            "\n");
                }
                
            return 0;
            }

            呃,我是water,那個這個還可以用記憶化dp來實現,不過我沒寫過很好的記憶化搜索,干脆每次都寫的遞推實現
            不過效率還好……

            posted on 2012-06-02 12:25 jh818012 閱讀(131) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            大美女久久久久久j久久| 久久国产精品一区| 99久久精品午夜一区二区| 久久久久免费精品国产| 精品久久久久久无码免费| 亚洲欧美一级久久精品| 久久夜色精品国产欧美乱| 伊人久久精品线影院| 伊人久久大香线蕉综合热线| 欧美黑人又粗又大久久久| 久久av免费天堂小草播放| 麻豆AV一区二区三区久久| 国产呻吟久久久久久久92| 欧洲人妻丰满av无码久久不卡| 久久亚洲高清综合| 国产情侣久久久久aⅴ免费| 欧美一级久久久久久久大片| 国产精品一久久香蕉国产线看| 亚洲精品国产自在久久| 99久久国产免费福利| 精品久久久久久无码专区不卡| 亚洲欧美久久久久9999| 国产伊人久久| 精品久久综合1区2区3区激情| 久久久久久国产精品无码超碰| 偷窥少妇久久久久久久久| 久久久国产精品| 久久久久久极精品久久久| 99久久国产综合精品五月天喷水| 热re99久久精品国99热| 久久夜色精品国产噜噜亚洲AV| 亚洲精品国精品久久99热一| 伊人久久大香线蕉AV一区二区 | 91秦先生久久久久久久| 国产精品久久久久久久久鸭| 亚洲国产精品久久电影欧美| 日韩人妻无码一区二区三区久久| 久久精品日日躁夜夜躁欧美| 亚洲国产天堂久久综合| 欧美亚洲国产精品久久| 日产精品99久久久久久|