• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            dp_1_M

            最近開始刷奇奇神的dp專題,呃,我是弱菜,啥都不會,現在才開始刷dp,
            在nocLyt神的熏陶下,覺著區間dp有些感覺了
            不過還是調半天才調出來
            今天做的這個
            M - Optimal Array Multiplication Sequence
            Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

            Description


             Optimal Array Multiplication Sequence 

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a tex2html_wrap_inline67 array, and B is a tex2html_wrap_inline71 array, it will take tex2html_wrap_inline73 , or 3000 multiplications to compute the C array.

            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a tex2html_wrap_inline103 array, Y is a tex2html_wrap_inline67 array, and Z is a tex2html_wrap_inline111 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

            (X Y) Z

            • tex2html_wrap_inline119 multiplications to determine the product (X Y), a tex2html_wrap_inline123 array.
            • Then tex2html_wrap_inline125 multiplications to determine the final result.
            • Total multiplications: 4500.

            X (Y Z)

            • tex2html_wrap_inline133 multiplications to determine the product (Y Z), a tex2html_wrap_inline139 array.
            • Then tex2html_wrap_inline141 multiplications to determine the final result.
            • Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplications required.

            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.

            Output

            Assume the arrays are named tex2html_wrap_inline157 . Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.

            Sample Input

            3 1 5 5 20 20 1 3 5 10 10 20 20 35 6 30 35 35 15 15 5 5 10 10 20 20 25 0

            Sample Output

            Case 1: (A1 x (A2 x A3)) Case 2: ((A1 x A2) x A3) Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

            雖說這個是水題吧,但好歹是自己用心寫的一個dp,就放在這了,

            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #define inf 0x7ffffff
            #define maxn 15
            int f[maxn][maxn],path[maxn][maxn];
            int l[maxn],r[maxn];
            int n;
            int min(int a,int b)
            {
                
            return a<b?a:b;
            }
            void print(int h,int t)
            {
                printf(
            "(");
                
            if (t-h==1)
                {
                    printf(
            "A%d x A%d",h,t);
                }
                
            else
                {
                    
            int tmp=path[h][t];
                    
            if(tmp-h==0)
                    {
                        printf(
            "A%d x ",h);
                         
            if(t-tmp-1==0) printf("A%d",t);else print(tmp+1,t);
                    }
                    
            else if(t-tmp==0)
                    {
                        
                        
            if(h-tmp-1==0) printf("A%d",h);else print(h,tmp-1);
                        printf(
            " x A%d",t);
                    }
                    
            else
                    {
                        
            if(h-tmp==0) printf("A%d",h);else print(h,tmp);
                        printf(
            " x ");
                        
            if(t-tmp-1==0) printf("A%d",t);else print(tmp+1,t);
                    }
                }
                printf(
            ")");
            }
            int main()
            {
                
            int i,j,k,times;
                times
            =0;
                
            while(scanf("%d",&n)!=EOF&&n!=0)
                {
                    times
            ++;
                    
            for(i=1; i<=n; i++) scanf("%d%d",&l[i],&r[i]);
                    memset(f,
            0,sizeof(f));
                    
            for(i=1; i<=n-1; i++)
                        f[i][i
            +1]=l[i]*r[i]*r[i+1];//,printf("%d %d %d\n",i,i+1,f[i][i+1]);
                    for(i=n-2; i>=1; i--)
                    {
                        
            for(j=i+2; j<=n; j++)
                        {
                            f[i][j]
            =inf;
                            
            for(k=i; k<=j; k++)
                                
            if(f[i][k]+f[k+1][j]+l[i]*r[k]*r[j]<f[i][j])
                                {
                                    
            //printf("%d %d %d %d %d %d\n",i,k,j,f[i][k],f[k+1][j],l[i]*r[k]*r[j]);
                                    f[i][j]=f[i][k]+f[k+1][j]+l[i]*r[k]*r[j];
                                    path[i][j]
            =k;
                                }
                            
            //printf("%d %d %d %d\n",i,j,f[i][j],path[i][j]);
                        }
                    }
                    
            //printf("%d\n",f[1][n]);
                    printf("Case %d: ",times);
                    print(
            1,n);
                    printf(
            "\n");
                }
                
            return 0;
            }

            呃,我是water,那個這個還可以用記憶化dp來實現,不過我沒寫過很好的記憶化搜索,干脆每次都寫的遞推實現
            不過效率還好……

            posted on 2012-06-02 12:25 jh818012 閱讀(131) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            久久偷看各类wc女厕嘘嘘| 精品久久久久国产免费| 伊人 久久 精品| 久久精品国产亚洲av高清漫画| 久久久久久夜精品精品免费啦 | 欧美亚洲国产精品久久蜜芽| 久久99久久99小草精品免视看| 国内精品久久久久久久久| 一本色道久久88综合日韩精品 | 97久久精品午夜一区二区| 久久se这里只有精品| 97久久国产露脸精品国产| 久久亚洲国产午夜精品理论片| 久久人人青草97香蕉| 99久久精品免费看国产一区二区三区 | 亚洲va中文字幕无码久久| 久久99久久成人免费播放| 无码精品久久久久久人妻中字| 欧美国产精品久久高清| 久久精品国产亚洲AV无码娇色| 欧美伊人久久大香线蕉综合69| 国产精品久久久久久搜索| 久久精品一区二区三区AV| 久久精品二区| AAA级久久久精品无码区| 国产精品美女久久久久网| 久久这里只有精品18| 久久国语露脸国产精品电影| 久久综合色区| 久久精品18| 久久综合精品国产一区二区三区 | 欧美va久久久噜噜噜久久| 99久久综合国产精品免费| 久久强奷乱码老熟女网站| 久久国产影院| 久久天天躁狠狠躁夜夜2020一| 久久久久久国产精品无码下载| 久久精品中文字幕久久| 国产L精品国产亚洲区久久| 嫩草影院久久国产精品| 精品免费久久久久国产一区|