• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1679

            The Unique MST

            Time Limit: 1000MS Memory Limit: 10000K
            Total Submissions: 13200 Accepted: 4575

            Description

            Given a connected undirected graph, tell if its minimum spanning tree is unique.

            Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
            1. V' = V.
            2. T is connected and acyclic.

            Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

            Input

            The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

            Output

            For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

            Sample Input

            2
            3 3
            1 2 1
            2 3 2
            3 1 3
            4 4
            1 2 2
            2 3 2
            3 4 2
            4 1 2
            

            Sample Output

            3
            Not Unique!
            
            裸的判定最小生成樹是否唯一
            做法
            1,對圖中每一條邊,如果存在與之相等的其他的邊,則標記這條邊
            2,求一次最小生成樹,得到weight1,作為比較用
            3,對于最小生成樹中的每一條邊,檢查這條邊有沒有與之相同的,如果有,則刪掉這條邊,
            再求最小生成樹,如果相等,則說明最小生成樹不唯一
            判斷完所有要判斷的邊后任然不相等,說明最小生成樹唯一
              1#include<algorithm>
              2#include<cstdlib>
              3using namespace std;
              4#define maxn 101
              5#define maxm 15000
              6struct node
              7{
              8    int u,v,w;
              9    int equal,used,del;
             10}
             edge[maxm];
             11int n,m;
             12int parent[maxn];
             13int first;
             14void ufset()
             15{
             16    int i;
             17    for(i=1; i<=n; i++) parent[i]=-1;
             18}

             19int find(int x)
             20{
             21    int s;
             22    for(s=x; parent[s]>=0; s=parent[s]);
             23    while(s!=x)
             24    {
             25        int tmp=parent[x];
             26        parent[x]=s;
             27        x=tmp;
             28    }

             29    return s;
             30}

             31void union1(int R1,int R2)
             32{
             33    int r1=find(R1),r2=find(R2);
             34    int tmp=parent[r1]+parent[r2];
             35    if (parent[r1]>parent[r2])//r2所在樹節(jié)點數(shù)多于r1
             36    {
             37        parent[r1]=r2;
             38        parent[r2]=tmp;
             39    }

             40    else
             41    {
             42        parent[r2]=r1;
             43        parent[r1]=tmp;
             44    }

             45}

             46int cmp(struct node a,struct node b)
             47{
             48    return a.w<b.w;
             49}

             50int kruskal()
             51{
             52    int sumweight=0,num=0;
             53    int u,v;
             54    ufset();
             55    for(int i=0; i<m; i++)
             56    {
             57        if (edge[i].del==1)
             58        {
             59            continue;
             60        }

             61        u=edge[i].u;
             62        v=edge[i].v;
             63        if (find(u)!=find(v))
             64        {
             65            sumweight+=edge[i].w;
             66            num++;
             67            union1(u,v);
             68            if (first)
             69            {
             70                edge[i].used=1;
             71            }

             72        }

             73        if (num>=n-1)
             74        {
             75            break;
             76        }

             77    }

             78    return sumweight;
             79}

             80int main()
             81{
             82    int t,i,j,k;
             83    int u,v,w;
             84    scanf("%d",&t);
             85    for(i=1; i<=t; i++)
             86    {
             87        scanf("%d%d",&n,&m);
             88        memset(edge,0,sizeof(edge));
             89        for(j=0; j<m; j++)
             90        {
             91            scanf("%d%d%d",&u,&v,&w);
             92            edge[j].u=u;
             93            edge[j].v=v;
             94            edge[j].w=w;
             95        }

             96        for(j=0; j<m; j++)
             97            for(k=0; k<m; k++)
             98            {
             99                if (k==j) continue;
            100                if (edge[j].w==edge[k].w) edge[j].equal=1;
            101            }

            102        sort(edge,edge+m,cmp);
            103        first=1;
            104        int weight1=kruskal(),weight2;
            105        first=0;
            106        for(j=0;j<m;j++)
            107        {
            108            if (edge[j].used==1&&edge[j].equal==1)
            109            {
            110                edge[j].del=1;
            111                weight2=kruskal();
            112                if (weight2==weight1)
            113                {
            114                    printf("Not Unique!\n");
            115                    break;
            116                }

            117                edge[j].del=0;
            118            }

            119        }

            120        if (j>=m)
            121        {
            122            printf("%d\n",weight1);
            123        }

            124    }

            125    return 0;
            126}

            127
             

            posted on 2012-04-02 01:49 jh818012 閱讀(260) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標題查看
            • --王私江
            久久99精品久久只有精品 | 国产精品美女久久久m| 亚洲精品美女久久久久99| 浪潮AV色综合久久天堂| 成人久久综合网| 性做久久久久久免费观看| 久久香综合精品久久伊人| 狠狠色丁香婷婷久久综合不卡| 热久久这里只有精品| 日韩欧美亚洲综合久久| 色噜噜狠狠先锋影音久久| 伊人热热久久原色播放www| 99久久99久久| 久久夜色精品国产欧美乱| 久久夜色精品国产www| 97久久香蕉国产线看观看| 亚洲国产成人久久综合碰| 青青草原1769久久免费播放| 无码八A片人妻少妇久久| 久久精品国产69国产精品亚洲| 大香伊人久久精品一区二区| 99久久免费只有精品国产| 久久国产色AV免费观看| 欧美亚洲国产精品久久| 精品久久久久一区二区三区| 国产成人精品久久免费动漫| 伊人久久综合无码成人网| 欧美亚洲日本久久精品| 国产精品成人99久久久久| 欧美一区二区精品久久| 久久国产精品久久| 久久91精品国产91久久小草| 国产成人无码久久久精品一| 久久精品99久久香蕉国产色戒 | 久久伊人中文无码| 深夜久久AAAAA级毛片免费看| 亚洲午夜久久久精品影院| 国产亚洲精久久久久久无码AV| 久久青青草原精品影院| 国产精品久久久99| 久久影院久久香蕉国产线看观看|