• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1679

            The Unique MST

            Time Limit: 1000MS Memory Limit: 10000K
            Total Submissions: 13200 Accepted: 4575

            Description

            Given a connected undirected graph, tell if its minimum spanning tree is unique.

            Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
            1. V' = V.
            2. T is connected and acyclic.

            Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

            Input

            The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

            Output

            For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

            Sample Input

            2
            3 3
            1 2 1
            2 3 2
            3 1 3
            4 4
            1 2 2
            2 3 2
            3 4 2
            4 1 2
            

            Sample Output

            3
            Not Unique!
            
            裸的判定最小生成樹是否唯一
            做法
            1,對圖中每一條邊,如果存在與之相等的其他的邊,則標(biāo)記這條邊
            2,求一次最小生成樹,得到weight1,作為比較用
            3,對于最小生成樹中的每一條邊,檢查這條邊有沒有與之相同的,如果有,則刪掉這條邊,
            再求最小生成樹,如果相等,則說明最小生成樹不唯一
            判斷完所有要判斷的邊后任然不相等,說明最小生成樹唯一
              1#include<algorithm>
              2#include<cstdlib>
              3using namespace std;
              4#define maxn 101
              5#define maxm 15000
              6struct node
              7{
              8    int u,v,w;
              9    int equal,used,del;
             10}
             edge[maxm];
             11int n,m;
             12int parent[maxn];
             13int first;
             14void ufset()
             15{
             16    int i;
             17    for(i=1; i<=n; i++) parent[i]=-1;
             18}

             19int find(int x)
             20{
             21    int s;
             22    for(s=x; parent[s]>=0; s=parent[s]);
             23    while(s!=x)
             24    {
             25        int tmp=parent[x];
             26        parent[x]=s;
             27        x=tmp;
             28    }

             29    return s;
             30}

             31void union1(int R1,int R2)
             32{
             33    int r1=find(R1),r2=find(R2);
             34    int tmp=parent[r1]+parent[r2];
             35    if (parent[r1]>parent[r2])//r2所在樹節(jié)點數(shù)多于r1
             36    {
             37        parent[r1]=r2;
             38        parent[r2]=tmp;
             39    }

             40    else
             41    {
             42        parent[r2]=r1;
             43        parent[r1]=tmp;
             44    }

             45}

             46int cmp(struct node a,struct node b)
             47{
             48    return a.w<b.w;
             49}

             50int kruskal()
             51{
             52    int sumweight=0,num=0;
             53    int u,v;
             54    ufset();
             55    for(int i=0; i<m; i++)
             56    {
             57        if (edge[i].del==1)
             58        {
             59            continue;
             60        }

             61        u=edge[i].u;
             62        v=edge[i].v;
             63        if (find(u)!=find(v))
             64        {
             65            sumweight+=edge[i].w;
             66            num++;
             67            union1(u,v);
             68            if (first)
             69            {
             70                edge[i].used=1;
             71            }

             72        }

             73        if (num>=n-1)
             74        {
             75            break;
             76        }

             77    }

             78    return sumweight;
             79}

             80int main()
             81{
             82    int t,i,j,k;
             83    int u,v,w;
             84    scanf("%d",&t);
             85    for(i=1; i<=t; i++)
             86    {
             87        scanf("%d%d",&n,&m);
             88        memset(edge,0,sizeof(edge));
             89        for(j=0; j<m; j++)
             90        {
             91            scanf("%d%d%d",&u,&v,&w);
             92            edge[j].u=u;
             93            edge[j].v=v;
             94            edge[j].w=w;
             95        }

             96        for(j=0; j<m; j++)
             97            for(k=0; k<m; k++)
             98            {
             99                if (k==j) continue;
            100                if (edge[j].w==edge[k].w) edge[j].equal=1;
            101            }

            102        sort(edge,edge+m,cmp);
            103        first=1;
            104        int weight1=kruskal(),weight2;
            105        first=0;
            106        for(j=0;j<m;j++)
            107        {
            108            if (edge[j].used==1&&edge[j].equal==1)
            109            {
            110                edge[j].del=1;
            111                weight2=kruskal();
            112                if (weight2==weight1)
            113                {
            114                    printf("Not Unique!\n");
            115                    break;
            116                }

            117                edge[j].del=0;
            118            }

            119        }

            120        if (j>=m)
            121        {
            122            printf("%d\n",weight1);
            123        }

            124    }

            125    return 0;
            126}

            127
             

            posted on 2012-04-02 01:49 jh818012 閱讀(260) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當(dāng)于是 取余3的意思 因為 3 的 二進(jìn)制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標(biāo)題查看
            • --王私江
            久久久艹| 奇米影视7777久久精品人人爽| 久久天堂AV综合合色蜜桃网| 久久久久亚洲AV无码麻豆| 狠狠色丁香婷婷综合久久来| 亚洲中文字幕伊人久久无码 | 国内精品久久久久久久亚洲| 亚洲精品99久久久久中文字幕 | 亚洲欧美伊人久久综合一区二区| 精品久久久久久| 久久99久久99精品免视看动漫| www.久久热.com| 性高湖久久久久久久久| 狠狠色伊人久久精品综合网| 久久综合88熟人妻| 老男人久久青草av高清| 久久久艹| 久久人妻少妇嫩草AV无码蜜桃| 久久精品99久久香蕉国产色戒 | 国产情侣久久久久aⅴ免费| 青青草原综合久久大伊人导航| 久久精品国产只有精品2020| 欧美噜噜久久久XXX| 亚洲国产天堂久久综合| 狠狠精品干练久久久无码中文字幕| 成人久久久观看免费毛片| 久久久久亚洲AV无码麻豆| 国产美女亚洲精品久久久综合| 久久强奷乱码老熟女| 久久精品国产99久久丝袜| 国产精品九九久久免费视频| 日本福利片国产午夜久久| 99久久这里只有精品| 2021久久精品国产99国产精品| 国内精品久久久久影院日本| 99久久免费国产精品热| 日本福利片国产午夜久久| 精品水蜜桃久久久久久久| 久久国产三级无码一区二区| 狠狠色丁香婷婷综合久久来来去 | 精品无码人妻久久久久久|