• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1679

            The Unique MST

            Time Limit: 1000MS Memory Limit: 10000K
            Total Submissions: 13200 Accepted: 4575

            Description

            Given a connected undirected graph, tell if its minimum spanning tree is unique.

            Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
            1. V' = V.
            2. T is connected and acyclic.

            Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

            Input

            The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

            Output

            For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

            Sample Input

            2
            3 3
            1 2 1
            2 3 2
            3 1 3
            4 4
            1 2 2
            2 3 2
            3 4 2
            4 1 2
            

            Sample Output

            3
            Not Unique!
            
            裸的判定最小生成樹是否唯一
            做法
            1,對圖中每一條邊,如果存在與之相等的其他的邊,則標記這條邊
            2,求一次最小生成樹,得到weight1,作為比較用
            3,對于最小生成樹中的每一條邊,檢查這條邊有沒有與之相同的,如果有,則刪掉這條邊,
            再求最小生成樹,如果相等,則說明最小生成樹不唯一
            判斷完所有要判斷的邊后任然不相等,說明最小生成樹唯一
              1#include<algorithm>
              2#include<cstdlib>
              3using namespace std;
              4#define maxn 101
              5#define maxm 15000
              6struct node
              7{
              8    int u,v,w;
              9    int equal,used,del;
             10}
             edge[maxm];
             11int n,m;
             12int parent[maxn];
             13int first;
             14void ufset()
             15{
             16    int i;
             17    for(i=1; i<=n; i++) parent[i]=-1;
             18}

             19int find(int x)
             20{
             21    int s;
             22    for(s=x; parent[s]>=0; s=parent[s]);
             23    while(s!=x)
             24    {
             25        int tmp=parent[x];
             26        parent[x]=s;
             27        x=tmp;
             28    }

             29    return s;
             30}

             31void union1(int R1,int R2)
             32{
             33    int r1=find(R1),r2=find(R2);
             34    int tmp=parent[r1]+parent[r2];
             35    if (parent[r1]>parent[r2])//r2所在樹節(jié)點數(shù)多于r1
             36    {
             37        parent[r1]=r2;
             38        parent[r2]=tmp;
             39    }

             40    else
             41    {
             42        parent[r2]=r1;
             43        parent[r1]=tmp;
             44    }

             45}

             46int cmp(struct node a,struct node b)
             47{
             48    return a.w<b.w;
             49}

             50int kruskal()
             51{
             52    int sumweight=0,num=0;
             53    int u,v;
             54    ufset();
             55    for(int i=0; i<m; i++)
             56    {
             57        if (edge[i].del==1)
             58        {
             59            continue;
             60        }

             61        u=edge[i].u;
             62        v=edge[i].v;
             63        if (find(u)!=find(v))
             64        {
             65            sumweight+=edge[i].w;
             66            num++;
             67            union1(u,v);
             68            if (first)
             69            {
             70                edge[i].used=1;
             71            }

             72        }

             73        if (num>=n-1)
             74        {
             75            break;
             76        }

             77    }

             78    return sumweight;
             79}

             80int main()
             81{
             82    int t,i,j,k;
             83    int u,v,w;
             84    scanf("%d",&t);
             85    for(i=1; i<=t; i++)
             86    {
             87        scanf("%d%d",&n,&m);
             88        memset(edge,0,sizeof(edge));
             89        for(j=0; j<m; j++)
             90        {
             91            scanf("%d%d%d",&u,&v,&w);
             92            edge[j].u=u;
             93            edge[j].v=v;
             94            edge[j].w=w;
             95        }

             96        for(j=0; j<m; j++)
             97            for(k=0; k<m; k++)
             98            {
             99                if (k==j) continue;
            100                if (edge[j].w==edge[k].w) edge[j].equal=1;
            101            }

            102        sort(edge,edge+m,cmp);
            103        first=1;
            104        int weight1=kruskal(),weight2;
            105        first=0;
            106        for(j=0;j<m;j++)
            107        {
            108            if (edge[j].used==1&&edge[j].equal==1)
            109            {
            110                edge[j].del=1;
            111                weight2=kruskal();
            112                if (weight2==weight1)
            113                {
            114                    printf("Not Unique!\n");
            115                    break;
            116                }

            117                edge[j].del=0;
            118            }

            119        }

            120        if (j>=m)
            121        {
            122            printf("%d\n",weight1);
            123        }

            124    }

            125    return 0;
            126}

            127
             

            posted on 2012-04-02 01:49 jh818012 閱讀(260) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            少妇高潮惨叫久久久久久| 东京热TOKYO综合久久精品| 青青青青久久精品国产| 久久精品国产精品国产精品污| 久久九九青青国产精品| 欧美精品一区二区久久| 亚洲综合日韩久久成人AV| 国产亚洲欧美成人久久片| 色99久久久久高潮综合影院 | 久久久噜噜噜久久中文字幕色伊伊| 久久综合精品国产一区二区三区| 久久水蜜桃亚洲av无码精品麻豆 | 香港aa三级久久三级老师2021国产三级精品三级在 | 午夜欧美精品久久久久久久| 99久久国产主播综合精品| 亚洲国产日韩欧美久久| 国产人久久人人人人爽| 狠狠色婷婷久久综合频道日韩 | 少妇久久久久久久久久| 欧美久久亚洲精品| 精品一区二区久久| 无码国内精品久久人妻| 久久综合久久综合亚洲| 国内精品久久久久影院网站| 国产精品免费看久久久| 无码国内精品久久人妻蜜桃 | 欧美黑人又粗又大久久久| 久久久午夜精品| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 热久久国产精品| 国产精品视频久久久| 麻豆AV一区二区三区久久| 精品多毛少妇人妻AV免费久久| 久久男人中文字幕资源站| 99久久国产热无码精品免费久久久久| 精品久久久久久久无码| 99久久精品国产高清一区二区| 久久ww精品w免费人成| 91精品国产综合久久精品| 2021少妇久久久久久久久久| 狠狠色丁香久久婷婷综合五月|