青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

asm, c, c++ are my all
-- Core In Computer
posts - 139,  comments - 123,  trackbacks - 0

/********************************************\
|????歡迎轉載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
\********************************************/

C++對象模型(3) - An Object Distinction
?
作者: Jerry Cat
時間: 2006/04/23
鏈接: http://www.shnenglu.com/jerysun0818/archive/2006/04/24/6114.html


1.3 An Object Distinction
-------------------------
intercede in a and b:在a和b間進行調解
The most common inadvertent mixing of idioms occurs when a concrete instance of a base class, such as

Library_materials thing1;
is used to program some aspect of polymorphism:

// class Book : public Library_materials { ...};
Book book;

// Oops: thing1 is not a Book!
// Rather, book is "sliceD" — thing1就是個只保留book的上半身的殘廢東西
// thing1 remains a Library_materials

thing1 = book;

// Oops: invokes
// Library_materials::check_in()
thing1.check_in();
rather than a pointer or reference of the base class:

// OK: thing2 now references book, 因為基類和派生類的布局是"基部重合在一起的", 派生類還是超集哩!
// 基類在"上"(低址處), 派生類多出的部分緊接著"連"在下面; 引用(本質上是指針)和指針對這兩種數據類型
// 有類似匯編中word ptr 和 dword ptr的關系, 它倆的首址是相同的. 編譯器會自動鑒別基類和子類從而調整
// 類似word ptr 和 dword ptr的這種類的"類型尋址"操作
// 而且Scott Meyer說過它們是一種"is a"的關系:"The derived is a base class"
// 向上(基類方向)轉換沒問題的, 向下轉換一般不可 - 簡直"無中生有"嘛! 但MFC中對動態類對象CDerived(用
// DECLARE_DYNCREATE宏 和 IMPLEMENT_DYNCREATE宏在程序運行時而非編譯動態生成)倒可用DYNAMIC_DOWNCAST
// 宏來完成將指向CBase的指針Downcast成指向它:
// CDerived * pDerived = DYNAMIC_DOWNCAST(CDerived, pBase); //CBase *pBase;
// 原型為DYNAMIC_DOWNCAST( class, pointer )

Library_materials &thing2 = book;//本質是地址,用起來象對象! 對象別名也,從這角度就是對象了嘛^_^

// OK: invokes Book::check_in()
thing2.check_in();

只有指針和引用才能"救多態"!
Although you can manipulate a base class object of an inheritance hierarchy either directly or indirectly, only the indirect manipulation of the object through a pointer or reference supports the polymorphism necessary for OO programming. The definition and use of thing2 in the previous example is a well-behaved instance of the OO paradigm. The definition and use of thing1 falls outside the OO idiom; it reflects a well-behaved instance of the ADT paradigm. Whether the behavior of thing1 is good or bad depends on what the programmer intended. In this example, its behavior is very likely a surprise.

// represent objects: uncertain type
Library_materials *px = retrieve_some_material();
Library_materials &rx = *px;

// represents datum: no surprise
Library_materials dx = *px;
it can never be said with certainty what the actual type of the object is that px or rx addresses. It can only be said that it is either a Library_materials object or a subtype rooted by Library_materials class. dx, however, is and can only be an object of the Library_materials class. Later in this section, I discuss why this behavior, although perhaps unexpected, is well behaved.

Although the polymorphic manipulation of an object requires that the object be accessed either through a pointer or a reference, the manipulation of a pointer or reference in C++ does not in itself necessarily result in polymorphism! For example, consider

// no polymorphism
int *pi;

// no language supported polymorphism
void *pvi;

// ok: class x serves as a base class
x *px;
多態只存在于
In C++, polymorphism exists only within individual public class hierarchies. px, for example, may address either an object of its own type or a type publicly derived from it (not considering ill-behaved casts). Nonpublic derivation and pointers of type void* can be spoken of as polymorphic, but they are without explicit language support; that is, they must be managed by the programmer through explicit casts. (One might say that they are not first-class polymorphic objects.)

The C++ language supports polymorphism in the following ways:
1. Through a set of implicit conversions, such as the conversion of a derived class pointer to a pointer of its public base type:
shape *ps = new circle();

2. Through the virtual function mechanism:
ps->rotate();

3. Through the dynamic_cast and typeid operators:
if ( circle *pc = dynamic_cast< circle* >( ps )) ...//象MFC中DYNAMIC_DOWNCAST和DECLARE_DYNCREATE,
//IMPLEMENT_DYNCREATE, IsKindOf(RUNTIME_CLASS(class))的組合拳

// example for CObject::IsKindOf
/* BOOL IsKindOf( const CRuntimeClass* pClass ) const; */
CAge a(21); // Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT( a.IsKindOf( RUNTIME_CLASS( CAge ) ) );
ASSERT( a.IsKindOf( RUNTIME_CLASS( CObject ) ) );

// example for RUNTIME_CLASS
/* RUNTIME_CLASS( class_name ) */
Use this macro to get the run-time class structure from the name of a C++ class.

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class specified by class_name. Only CObject-derived classes declared with DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL will return pointers to a CRuntimeClass structure.

CRuntimeClass* prt = RUNTIME_CLASS( CAge );
ASSERT( lstrcmp( prt->m_lpszClassName, "CAge" )? == 0 );

=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=
The memory requirements to represent a class object in general are the following:

1.) The accumulated size of its nonstatic data members
2.) Plus any padding (between members or on the aggregate boundary itself) due to alignment constraints (or simple efficiency)
3.) Plus any internally generated overhead to support the virtuals

The memory requirement to represent a pointer, [2] however, is a fixed size regardless of the type it addresses. For example, given the following declaration of a ZooAnimal class:

? [2]Or to represent a reference; internally, a reference is generally implemented as a pointer and the object syntax transformed into the indirection required of a pointer.
class ZooAnimal {
public:
?? ZooAnimal();
?? virtual ~ZooAnimal();

?? // ...

?? virtual void rotate();
protected:
?? int loc;
?? String name;
};

ZooAnimal za( "Zoey" );
ZooAnimal *pza = &za;

a likely layout of the class object za and the pointer pza is pictured in Figure 1.4. (I return to the layout of data members in Chapter 3.)

Figure 1.4. Layout of Object and Pointer of Independent Class


layout1.GIF

The Type of a Pointer:
=-=-=-=-=-=-=-=-=-=-=
But how, then, does a pointer to a ZooAnimal differ from, say, a pointer to an integer or a pointer to a template Array instantiated with a String?

ZooAnimal *px;
int *pi
Array< String > *pta;
In terms of memory requirements, there is generally no difference: all three need to be allocated sufficient memory to hold a machine address (usually a machine word). So the difference between pointers to different types rests neither in the representation of the pointer nor in the values (addresses) the pointers may hold. The difference lies in the type of object being addressed. That is, the type of a pointer instructs the compiler as to how to interpret the memory found at a particular address and also just how much memory that interpretation should span:

An integer pointer addressing memory location 1000 on a 32-bit machine spans the address space 1000—1003.

The ZooAnimal pointer, if we presume a conventional 8-byte String (a 4-byte character pointer and an integer to hold the string length), spans the address space 1000—1015.

Hmm. Just out of curiosity, what address space does a void* pointer that holds memory location 1000 span? That's right, we don't know. That's why a pointer of type void* can only hold an address and not actually operate on the object it addresses.

So a cast in general is a kind of compiler directive. In most cases, it does not alter the actual address a pointer contains. Rather, it alters only the interpretation of the size and composition of the memory being addressed.

Adding Polymorphism
=-=-=-=-=-=-=-=-=-=
Now, let's define a Bear as a kind of ZooAnimal. This is done, of course, through public inheritance:

class Bear : public ZooAnimal {
public:
?? Bear();
?? ~Bear();
?? // ...
?? void rotate();
?? virtual void dance();
?? // ...
protected:
?? enum Dances { ... };

?? Dances dances_known;
?? int cell_block;
};

Bear b( "Yogi" );
Bear *pb = &b;
Bear &rb = *pb;
What can we say about the memory requirements of b, pb, and rb? Both the pointer and reference require a single word of storage (4 bytes on a 32-bit processor). The Bear object itself, however, requires 24 bytes (the size of a ZooAnimal [16 bytes] plus the 8 bytes Bear introduces). A likely memory layout is pictured in Figure 1.5.

Figure 1.5. Layout of Object and Pointer of Derived Class

layout2.GIF

Okay, given that our Bear object is situated at memory location 1000, what are the real differences between a Bear and ZooAnimal pointer?

Bear b;
ZooAnimal *pz = &b;
Bear *pb = &b;
Each addresses the same first byte of the Bear object. The difference is that the address span of pb encompasses the entire Bear object, while the span of pz encompasses only the ZooAnimal subobject of Bear.

pz cannot directly access any members other than those present within the ZooAnimal subobject, except through the virtual mechanism:

// illegal: cell_block not a member
// of ZooAnimal, although we ``know''
// pz currently addresses a Bear object
pz->cell_block;
// okay: an explicit downcast
(( Bear* )pz)->cell_block;

// better: but a run-time operation
if ( Bear* pb2 = dynamic_cast< Bear* >( pz ))
?? pb2->cell_block;

// ok: cell_block a member of Bear
pb->cell_block;
When we write

pz->rotate();
the type of pz determines the following at compile time:

The fixed, available interface (that is, pz may invoke only the ZooAnimal public interface)

The access level of that interface (for example, rotate() is a public member of ZooAnimal)

The type of the object that pz addresses at each point of execution determines the instance of rotate() invoked. The encapsulation of the type information is maintained not in pz but in the link between the object's vptr and the virtual table the vptr addresses (see Section 4.2 for a full discussion of virtual functions).
So, then, why is it that, given

Bear b;
ZooAnimal za = b;

// ZooAnimal::rotate() invoked
za.rotate();
the instance of rotate() invoked is the ZooAnimal instance and not that of Bear? Moreover, if memberwise initialization copies the values of one object to another, why is za's vptr not addressing Bear's virtual table?

The answer to the second question is that the compiler intercedes in the initialization and assignment of one class object with another. The compiler must ensure that if an object contains one or more vptrs, those vptr values are not initialized or changed by the source object .
子類是基類, 基類非子類. 兒子是老子(生的), 老子非兒子(生的).
The answer to the first question is that za is not (and can never be) a Bear; it is (and can never be anything but) a ZooAnimal. Polymorphism, the potential to be of more than one type, is not physically possible in directly accessed objects. Paradoxically, direct object manipulation is not supported under OO programming. For example, given the following set of definitions:
{
?? ZooAnimal za;
?? ZooAnimal *pza;

?? Bear b;
?? Panda *pp = new Panda;

?? pza = &b;
}
one possible memory layout is pictured in Figure 1.6.

Figure 1.6. Memory Layout of Sequence of Definitions

layout3.GIF

Assigning pz the address of either za, b, or that contained by pp is obviously not a problem. A pointer and a reference support polymorphism because they do not involve any type-dependent commitment of resources. Rather, all that is altered is the interpretation of the size and composition of the memory they address.

Any attempt to alter the actual size of the object za, however, violates the contracted resource requirements of its definition. Assign the entire Bear object to za and the object overflows its allocated memory. As a result, the executable is, literally, corrupted, although the corruption may not manifest itself as a core dump.

When a base class object is directly initialized or assigned with a derived class object, the derived object is sliced to fit into the available memory resources of the base type. There is nothing of the derived type remaining. Polymorphism is not present, and an observant compiler can resolve an invocation of a virtual function through the object at compile time, thus by-passing the virtual mechanism. This can be a significant performance win if the virtual function is defined as inline.
多態是面向對象OO的實質
To summarize, polymorphism is a powerful design mechanism that allows for the encapsulation of related types behind an abstract public interface, such as our Library_materials hierarchy. The cost is an additional level of indirection, both in terms of memory acquisition and type resolution. C++ supports polymorphism through class pointers and references. This style of programming is called object-oriented.
ADT抽象數據類型是基于對象OB
C++ also supports a concrete ADT style of programming now called object-based (OB)—nonpolymorphic data types, such as a String class. A String class exhibits a nonpolymorphic form of encapsulation; it provides a public interface and private implementation (both of state and algorithm) but does not support type extension. An OB design can be faster and more compact than an equivalent OO design. Faster because all function invocations are resolved at compile time and object construction need not set up the virtual mechanism, and more compact because each class object need not carry the additional overhead traditionally associated with the support of the virtual mechanism. However, an OB design also is less flexible.

posted on 2006-04-24 03:45 Jerry Cat 閱讀(702) 評論(0)  編輯 收藏 引用

只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理



<2006年4月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

常用鏈接

留言簿(7)

隨筆檔案

最新隨筆

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美国产免费| 99香蕉国产精品偷在线观看| 亚洲人成高清| 国产精品久久久爽爽爽麻豆色哟哟| 久久影院午夜片一区| 亚洲女人天堂成人av在线| 亚洲欧洲日韩在线| 久久精品国产清高在天天线| 一区二区三区欧美成人| 亚洲国产日韩一区| 伊人男人综合视频网| 国产美女精品免费电影| 国产精品久久久久久久久久免费| 欧美激情综合| 欧美91大片| 玖玖综合伊人| 理论片一区二区在线| 久久人人精品| 久久人人97超碰国产公开结果| 欧美一区二区三区四区视频| 亚洲一区二区在线| 亚洲视频精品| 亚洲一级在线观看| 亚洲一级网站| 午夜亚洲性色福利视频| 亚洲欧洲av一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一区中文| 亚洲欧洲日产国产网站| 亚洲大片免费看| 亚洲国产精品va在线观看黑人| 一区在线影院| 亚洲国产精品va在线看黑人| 亚洲高清123| 影视先锋久久| 亚洲高清视频一区二区| 亚洲狠狠婷婷| 亚洲精品在线一区二区| 亚洲毛片在线观看.| 一区二区成人精品| 亚洲自啪免费| 久久精品国产一区二区电影| 久久久精品国产免费观看同学| 久久三级视频| 欧美国产视频日韩| 亚洲美女精品成人在线视频| aa级大片欧美三级| 亚洲午夜在线视频| 久久高清免费观看| 女女同性女同一区二区三区91| 欧美极品色图| 国产精品一区二区三区久久| 国内成+人亚洲| 亚洲高清一区二| 99精品视频一区二区三区| 亚洲一区区二区| 久久成人资源| 亚洲高清视频中文字幕| 99re热精品| 午夜宅男欧美| 老司机精品久久| 欧美性猛交xxxx乱大交蜜桃| 国产日韩在线看片| 亚洲欧洲日产国码二区| 亚洲美女黄色| 久久精品人人做人人综合| 欧美高清你懂得| 国产精品永久免费视频| 亚洲电影在线| 亚洲制服少妇| 欧美ed2k| 亚洲图片欧洲图片日韩av| 久久理论片午夜琪琪电影网| 欧美日韩91| 国产一区在线免费观看| 99热免费精品| 久久精品最新地址| 亚洲人体1000| 久久成人18免费观看| 欧美男人的天堂| 激情欧美亚洲| 亚洲欧美日韩在线高清直播| 蜜臀久久久99精品久久久久久 | 美国十次了思思久久精品导航| 亚洲国产一区二区视频 | 亚洲欧美视频| 欧美激情精品久久久久久蜜臀| 国产欧美二区| 亚洲国产综合在线看不卡| 欧美一区二区视频免费观看 | 午夜视频一区| 欧美日韩免费观看一区二区三区| 黄色成人在线免费| 在线一区观看| 欧美国产欧美亚洲国产日韩mv天天看完整 | 欧美日韩mv| 狠狠色丁香婷婷综合| 亚洲一区二区三区激情| 欧美高清在线一区二区| 亚洲欧美另类中文字幕| 欧美精品久久99| 在线不卡亚洲| 久久精品免费电影| aa级大片欧美| 欧美韩日一区二区| 日韩午夜免费视频| 亚洲乱亚洲高清| 麻豆久久婷婷| 欧美中文字幕不卡| 国产精品欧美日韩久久| 在线天堂一区av电影| 亚洲第一天堂av| 久久综合导航| 激情综合中文娱乐网| 欧美中文字幕| 亚洲影院免费| 欧美亚州一区二区三区 | 亚洲国产精品成人精品| 久久精品人人做人人爽| 国产欧美日韩另类视频免费观看| 在线一区亚洲| 亚洲精品免费一二三区| 欧美成黄导航| 亚洲破处大片| 欧美成人免费在线| 久久综合久色欧美综合狠狠| 激情文学一区| 免费亚洲婷婷| 噜噜噜在线观看免费视频日韩| 国产一区久久| 老妇喷水一区二区三区| 久久久久久久一区二区| 黄色日韩网站视频| 久久午夜视频| 老司机午夜精品| 亚洲第一成人在线| 亚洲电影第1页| 欧美精品日韩| 宅男噜噜噜66一区二区| 99riav1国产精品视频| 国产精品99免费看| 亚洲免费在线观看视频| 亚洲一区制服诱惑| 国产日韩欧美一区二区| 久久精品亚洲国产奇米99| 午夜综合激情| 国内精品久久久久影院薰衣草| 久久久噜噜噜久久久| 久久久久国产一区二区| 亚洲国产成人在线视频| 欧美成人免费播放| 欧美精品在线一区二区三区| 亚洲调教视频在线观看| 亚洲在线视频网站| 国产一区二区剧情av在线| 欧美ed2k| 欧美三级欧美一级| 久久国产精品一区二区三区| 久久久精品一区| 亚洲精品视频一区| 一区二区激情视频| 国产日本欧洲亚洲| 男人的天堂亚洲| 欧美日韩第一页| 午夜久久美女| 另类综合日韩欧美亚洲| 一区二区激情| 羞羞视频在线观看欧美| 亚洲国产高清高潮精品美女| 最新亚洲激情| 国产精品最新自拍| 欧美99久久| 国产精品第一页第二页第三页| 久久精品国产精品| 欧美高清视频一区| 欧美诱惑福利视频| 欧美第一黄网免费网站| 午夜精品在线看| 麻豆视频一区二区| 亚洲综合久久久久| 久久综合色播五月| 亚洲欧美在线aaa| 免费不卡中文字幕视频| 亚洲女同精品视频| 老司机午夜精品视频| 亚洲午夜国产成人av电影男同| 久久av二区| 一区二区三区毛片| 久久久久久久成人| 亚洲欧美日本精品| 麻豆精品91| 久久国产精品亚洲va麻豆| 欧美日韩99| 欧美成人乱码一区二区三区| 国产精品久久国产精麻豆99网站| 免费日韩一区二区| 国产欧美精品国产国产专区| 亚洲日韩欧美视频| 在线成人av| 亚洲欧美日韩综合一区|