青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

asm, c, c++ are my all
-- Core In Computer
posts - 139,  comments - 123,  trackbacks - 0

/********************************************\
|????歡迎轉(zhuǎn)載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
\********************************************/

C++對象模型(3) - An Object Distinction
?
作者: Jerry Cat
時間: 2006/04/23
鏈接: http://www.shnenglu.com/jerysun0818/archive/2006/04/24/6114.html


1.3 An Object Distinction
-------------------------
intercede in a and b:在a和b間進行調(diào)解
The most common inadvertent mixing of idioms occurs when a concrete instance of a base class, such as

Library_materials thing1;
is used to program some aspect of polymorphism:

// class Book : public Library_materials { ...};
Book book;

// Oops: thing1 is not a Book!
// Rather, book is "sliceD" — thing1就是個只保留book的上半身的殘廢東西
// thing1 remains a Library_materials

thing1 = book;

// Oops: invokes
// Library_materials::check_in()
thing1.check_in();
rather than a pointer or reference of the base class:

// OK: thing2 now references book, 因為基類和派生類的布局是"基部重合在一起的", 派生類還是超集哩!
// 基類在"上"(低址處), 派生類多出的部分緊接著"連"在下面; 引用(本質(zhì)上是指針)和指針對這兩種數(shù)據(jù)類型
// 有類似匯編中word ptr 和 dword ptr的關(guān)系, 它倆的首址是相同的. 編譯器會自動鑒別基類和子類從而調(diào)整
// 類似word ptr 和 dword ptr的這種類的"類型尋址"操作
// 而且Scott Meyer說過它們是一種"is a"的關(guān)系:"The derived is a base class"
// 向上(基類方向)轉(zhuǎn)換沒問題的, 向下轉(zhuǎn)換一般不可 - 簡直"無中生有"嘛! 但MFC中對動態(tài)類對象CDerived(用
// DECLARE_DYNCREATE宏 和 IMPLEMENT_DYNCREATE宏在程序運行時而非編譯動態(tài)生成)倒可用DYNAMIC_DOWNCAST
// 宏來完成將指向CBase的指針Downcast成指向它:
// CDerived * pDerived = DYNAMIC_DOWNCAST(CDerived, pBase); //CBase *pBase;
// 原型為DYNAMIC_DOWNCAST( class, pointer )

Library_materials &thing2 = book;//本質(zhì)是地址,用起來象對象! 對象別名也,從這角度就是對象了嘛^_^

// OK: invokes Book::check_in()
thing2.check_in();

只有指針和引用才能"救多態(tài)"!
Although you can manipulate a base class object of an inheritance hierarchy either directly or indirectly, only the indirect manipulation of the object through a pointer or reference supports the polymorphism necessary for OO programming. The definition and use of thing2 in the previous example is a well-behaved instance of the OO paradigm. The definition and use of thing1 falls outside the OO idiom; it reflects a well-behaved instance of the ADT paradigm. Whether the behavior of thing1 is good or bad depends on what the programmer intended. In this example, its behavior is very likely a surprise.

// represent objects: uncertain type
Library_materials *px = retrieve_some_material();
Library_materials &rx = *px;

// represents datum: no surprise
Library_materials dx = *px;
it can never be said with certainty what the actual type of the object is that px or rx addresses. It can only be said that it is either a Library_materials object or a subtype rooted by Library_materials class. dx, however, is and can only be an object of the Library_materials class. Later in this section, I discuss why this behavior, although perhaps unexpected, is well behaved.

Although the polymorphic manipulation of an object requires that the object be accessed either through a pointer or a reference, the manipulation of a pointer or reference in C++ does not in itself necessarily result in polymorphism! For example, consider

// no polymorphism
int *pi;

// no language supported polymorphism
void *pvi;

// ok: class x serves as a base class
x *px;
多態(tài)只存在于
In C++, polymorphism exists only within individual public class hierarchies. px, for example, may address either an object of its own type or a type publicly derived from it (not considering ill-behaved casts). Nonpublic derivation and pointers of type void* can be spoken of as polymorphic, but they are without explicit language support; that is, they must be managed by the programmer through explicit casts. (One might say that they are not first-class polymorphic objects.)

The C++ language supports polymorphism in the following ways:
1. Through a set of implicit conversions, such as the conversion of a derived class pointer to a pointer of its public base type:
shape *ps = new circle();

2. Through the virtual function mechanism:
ps->rotate();

3. Through the dynamic_cast and typeid operators:
if ( circle *pc = dynamic_cast< circle* >( ps )) ...//象MFC中DYNAMIC_DOWNCAST和DECLARE_DYNCREATE,
//IMPLEMENT_DYNCREATE, IsKindOf(RUNTIME_CLASS(class))的組合拳

// example for CObject::IsKindOf
/* BOOL IsKindOf( const CRuntimeClass* pClass ) const; */
CAge a(21); // Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT( a.IsKindOf( RUNTIME_CLASS( CAge ) ) );
ASSERT( a.IsKindOf( RUNTIME_CLASS( CObject ) ) );

// example for RUNTIME_CLASS
/* RUNTIME_CLASS( class_name ) */
Use this macro to get the run-time class structure from the name of a C++ class.

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class specified by class_name. Only CObject-derived classes declared with DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL will return pointers to a CRuntimeClass structure.

CRuntimeClass* prt = RUNTIME_CLASS( CAge );
ASSERT( lstrcmp( prt->m_lpszClassName, "CAge" )? == 0 );

=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=
The memory requirements to represent a class object in general are the following:

1.) The accumulated size of its nonstatic data members
2.) Plus any padding (between members or on the aggregate boundary itself) due to alignment constraints (or simple efficiency)
3.) Plus any internally generated overhead to support the virtuals

The memory requirement to represent a pointer, [2] however, is a fixed size regardless of the type it addresses. For example, given the following declaration of a ZooAnimal class:

? [2]Or to represent a reference; internally, a reference is generally implemented as a pointer and the object syntax transformed into the indirection required of a pointer.
class ZooAnimal {
public:
?? ZooAnimal();
?? virtual ~ZooAnimal();

?? // ...

?? virtual void rotate();
protected:
?? int loc;
?? String name;
};

ZooAnimal za( "Zoey" );
ZooAnimal *pza = &za;

a likely layout of the class object za and the pointer pza is pictured in Figure 1.4. (I return to the layout of data members in Chapter 3.)

Figure 1.4. Layout of Object and Pointer of Independent Class


layout1.GIF

The Type of a Pointer:
=-=-=-=-=-=-=-=-=-=-=
But how, then, does a pointer to a ZooAnimal differ from, say, a pointer to an integer or a pointer to a template Array instantiated with a String?

ZooAnimal *px;
int *pi
Array< String > *pta;
In terms of memory requirements, there is generally no difference: all three need to be allocated sufficient memory to hold a machine address (usually a machine word). So the difference between pointers to different types rests neither in the representation of the pointer nor in the values (addresses) the pointers may hold. The difference lies in the type of object being addressed. That is, the type of a pointer instructs the compiler as to how to interpret the memory found at a particular address and also just how much memory that interpretation should span:

An integer pointer addressing memory location 1000 on a 32-bit machine spans the address space 1000—1003.

The ZooAnimal pointer, if we presume a conventional 8-byte String (a 4-byte character pointer and an integer to hold the string length), spans the address space 1000—1015.

Hmm. Just out of curiosity, what address space does a void* pointer that holds memory location 1000 span? That's right, we don't know. That's why a pointer of type void* can only hold an address and not actually operate on the object it addresses.

So a cast in general is a kind of compiler directive. In most cases, it does not alter the actual address a pointer contains. Rather, it alters only the interpretation of the size and composition of the memory being addressed.

Adding Polymorphism
=-=-=-=-=-=-=-=-=-=
Now, let's define a Bear as a kind of ZooAnimal. This is done, of course, through public inheritance:

class Bear : public ZooAnimal {
public:
?? Bear();
?? ~Bear();
?? // ...
?? void rotate();
?? virtual void dance();
?? // ...
protected:
?? enum Dances { ... };

?? Dances dances_known;
?? int cell_block;
};

Bear b( "Yogi" );
Bear *pb = &b;
Bear &rb = *pb;
What can we say about the memory requirements of b, pb, and rb? Both the pointer and reference require a single word of storage (4 bytes on a 32-bit processor). The Bear object itself, however, requires 24 bytes (the size of a ZooAnimal [16 bytes] plus the 8 bytes Bear introduces). A likely memory layout is pictured in Figure 1.5.

Figure 1.5. Layout of Object and Pointer of Derived Class

layout2.GIF

Okay, given that our Bear object is situated at memory location 1000, what are the real differences between a Bear and ZooAnimal pointer?

Bear b;
ZooAnimal *pz = &b;
Bear *pb = &b;
Each addresses the same first byte of the Bear object. The difference is that the address span of pb encompasses the entire Bear object, while the span of pz encompasses only the ZooAnimal subobject of Bear.

pz cannot directly access any members other than those present within the ZooAnimal subobject, except through the virtual mechanism:

// illegal: cell_block not a member
// of ZooAnimal, although we ``know''
// pz currently addresses a Bear object
pz->cell_block;
// okay: an explicit downcast
(( Bear* )pz)->cell_block;

// better: but a run-time operation
if ( Bear* pb2 = dynamic_cast< Bear* >( pz ))
?? pb2->cell_block;

// ok: cell_block a member of Bear
pb->cell_block;
When we write

pz->rotate();
the type of pz determines the following at compile time:

The fixed, available interface (that is, pz may invoke only the ZooAnimal public interface)

The access level of that interface (for example, rotate() is a public member of ZooAnimal)

The type of the object that pz addresses at each point of execution determines the instance of rotate() invoked. The encapsulation of the type information is maintained not in pz but in the link between the object's vptr and the virtual table the vptr addresses (see Section 4.2 for a full discussion of virtual functions).
So, then, why is it that, given

Bear b;
ZooAnimal za = b;

// ZooAnimal::rotate() invoked
za.rotate();
the instance of rotate() invoked is the ZooAnimal instance and not that of Bear? Moreover, if memberwise initialization copies the values of one object to another, why is za's vptr not addressing Bear's virtual table?

The answer to the second question is that the compiler intercedes in the initialization and assignment of one class object with another. The compiler must ensure that if an object contains one or more vptrs, those vptr values are not initialized or changed by the source object .
子類是基類, 基類非子類. 兒子是老子(生的), 老子非兒子(生的).
The answer to the first question is that za is not (and can never be) a Bear; it is (and can never be anything but) a ZooAnimal. Polymorphism, the potential to be of more than one type, is not physically possible in directly accessed objects. Paradoxically, direct object manipulation is not supported under OO programming. For example, given the following set of definitions:
{
?? ZooAnimal za;
?? ZooAnimal *pza;

?? Bear b;
?? Panda *pp = new Panda;

?? pza = &b;
}
one possible memory layout is pictured in Figure 1.6.

Figure 1.6. Memory Layout of Sequence of Definitions

layout3.GIF

Assigning pz the address of either za, b, or that contained by pp is obviously not a problem. A pointer and a reference support polymorphism because they do not involve any type-dependent commitment of resources. Rather, all that is altered is the interpretation of the size and composition of the memory they address.

Any attempt to alter the actual size of the object za, however, violates the contracted resource requirements of its definition. Assign the entire Bear object to za and the object overflows its allocated memory. As a result, the executable is, literally, corrupted, although the corruption may not manifest itself as a core dump.

When a base class object is directly initialized or assigned with a derived class object, the derived object is sliced to fit into the available memory resources of the base type. There is nothing of the derived type remaining. Polymorphism is not present, and an observant compiler can resolve an invocation of a virtual function through the object at compile time, thus by-passing the virtual mechanism. This can be a significant performance win if the virtual function is defined as inline.
多態(tài)是面向?qū)ο驩O的實質(zhì)
To summarize, polymorphism is a powerful design mechanism that allows for the encapsulation of related types behind an abstract public interface, such as our Library_materials hierarchy. The cost is an additional level of indirection, both in terms of memory acquisition and type resolution. C++ supports polymorphism through class pointers and references. This style of programming is called object-oriented.
ADT抽象數(shù)據(jù)類型是基于對象OB
C++ also supports a concrete ADT style of programming now called object-based (OB)—nonpolymorphic data types, such as a String class. A String class exhibits a nonpolymorphic form of encapsulation; it provides a public interface and private implementation (both of state and algorithm) but does not support type extension. An OB design can be faster and more compact than an equivalent OO design. Faster because all function invocations are resolved at compile time and object construction need not set up the virtual mechanism, and more compact because each class object need not carry the additional overhead traditionally associated with the support of the virtual mechanism. However, an OB design also is less flexible.

posted on 2006-04-24 03:45 Jerry Cat 閱讀(702) 評論(0)  編輯 收藏 引用

只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理



<2006年4月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

常用鏈接

留言簿(7)

隨筆檔案

最新隨筆

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧美一区二区原创| 亚洲人成在线观看| 国产精品啊v在线| 欧美伦理91i| 国产精品av免费在线观看| 国产在线乱码一区二区三区| 99国产精品久久久久久久久久 | 亚洲欧美综合v| 蜜乳av另类精品一区二区| 亚洲精品一二三| 久久成人国产精品| 国产精品久久国产精品99gif| 黄色成人片子| 亚洲欧美激情一区| 久久色在线观看| 亚洲欧美偷拍卡通变态| 欧美日韩小视频| 亚洲开发第一视频在线播放| 老司机免费视频久久| 欧美一区二区在线| 麻豆精品在线视频| 欧美少妇一区| 一区二区高清视频| 欧美激情日韩| 美女图片一区二区| 国产精品日韩久久久| 亚洲网站在线看| 日韩视频一区| 欧美日韩久久精品| 99re视频这里只有精品| 久久av在线| 亚洲专区国产精品| 女人香蕉久久**毛片精品| 国外精品视频| 久久综合成人精品亚洲另类欧美| 午夜精品福利一区二区三区av | 欧美成人第一页| 欧美在线中文字幕| 一区二区三区中文在线观看| 久久久久久网址| 欧美在线精品免播放器视频| 国内外成人在线视频| 亚洲尤物在线| 亚洲一区二区三| 国产精品三上| 久久亚洲二区| 亚洲嫩草精品久久| 国产综合色产在线精品| 免费成人av在线| 欧美成人一区二区| 亚洲性视频h| 亚洲综合欧美日韩| 国产精品系列在线播放| 久久精品国产免费| 巨胸喷奶水www久久久免费动漫| 在线日韩视频| 亚洲国产中文字幕在线观看| 欧美激情影院| 羞羞漫画18久久大片| 亚洲午夜高清视频| 国产一区自拍视频| 欧美韩日精品| 欧美涩涩视频| 六十路精品视频| 欧美韩国日本综合| 亚洲欧美在线一区| 国产精品99久久久久久www| 国产欧美精品在线观看| 欧美成人精精品一区二区频| 欧美精品黄色| 久久不射电影网| 欧美高清在线视频观看不卡| 亚洲精品免费在线观看| 亚洲在线视频观看| 亚洲国产欧美日韩精品| 亚洲香蕉网站| 亚洲狠狠婷婷| 午夜精品福利在线观看| 亚洲精品美女| 午夜精品免费视频| 亚洲精品免费电影| 久久精品99国产精品| 夜夜爽夜夜爽精品视频| 欧美一区二区视频在线观看2020 | 国产一区视频在线观看免费| 亚洲国产精品va在线观看黑人 | 国产精品嫩草99a| 免费在线观看成人av| 欧美三日本三级三级在线播放| 美女爽到呻吟久久久久| 国产精品欧美日韩久久| 亚洲国产日韩在线| 尤妮丝一区二区裸体视频| 中文av字幕一区| 一区二区不卡在线视频 午夜欧美不卡在 | 国产欧美三级| 欧美a级在线| 国产欧美日本一区视频| 亚洲第一二三四五区| 国产精品久久综合| 亚洲精品自在久久| 亚洲在线视频| 国产美女精品在线| 久久精品国产99国产精品| 美女爽到呻吟久久久久| 亚洲精品一区二区三区福利| 欧美日韩妖精视频| 亚洲一区二区三区四区视频| 欧美在线你懂的| 激情成人综合| 欧美大尺度在线观看| 日韩视频免费在线| 久久er99精品| 亚洲人成啪啪网站| 欧美午夜激情小视频| 翔田千里一区二区| 欧美成年人视频网站欧美| 99re6热在线精品视频播放速度| 欧美日韩一区二区三区视频| 午夜精品久久久久久99热软件| 另类亚洲自拍| 中文亚洲免费| 精品1区2区3区4区| 欧美精品一区二区三区久久久竹菊| 99av国产精品欲麻豆| 欧美自拍丝袜亚洲| 亚洲日本成人| 国产精品亚洲综合色区韩国| 久久久美女艺术照精彩视频福利播放| 亚洲国产一区二区三区高清| 久久精品国产精品亚洲精品| 91久久精品www人人做人人爽| 欧美亚州一区二区三区| 久久亚洲精品中文字幕冲田杏梨 | 久久伊人一区二区| 洋洋av久久久久久久一区| 久久亚洲私人国产精品va| 一本色道久久88精品综合| 国产亚洲精品bt天堂精选| 欧美精品在线免费播放| 欧美在线视频一区二区| 一本色道久久综合亚洲精品婷婷 | 性欧美videos另类喷潮| 91久久久精品| 国产一区二区三区日韩欧美| 欧美精品在线观看播放| 久久人人看视频| 香蕉久久夜色精品国产| 亚洲最新视频在线| 亚洲大胆人体在线| 久久精品麻豆| 亚洲欧美一区二区原创| 亚洲免费电影在线| 精品动漫一区二区| 国产精品一区一区三区| 欧美日韩国产小视频在线观看| 久久网站热最新地址| 欧美一区二区福利在线| 亚洲一区在线免费| 99热免费精品| 亚洲欧洲在线播放| 亚洲第一黄色| 亚洲第一中文字幕| 美女精品一区| 久久久亚洲成人| 久久婷婷久久| 久久久人成影片一区二区三区| 欧美一区二区福利在线| 亚洲综合色在线| 午夜亚洲性色视频| 欧美亚洲网站| 欧美亚洲一区二区三区| 久久爱91午夜羞羞| 久久先锋影音| 麻豆freexxxx性91精品| 美女精品一区| 亚洲国产乱码最新视频| 亚洲精品123区| 亚洲精品三级| 夜夜嗨av一区二区三区| 一本色道久久88亚洲综合88| 亚洲色诱最新| 欧美亚洲在线视频| 久久久国产精品亚洲一区| 久久精品国产亚洲精品 | 国产精品亚洲激情| 国产视频欧美视频| 国产一区二区三区不卡在线观看| 国产精品一区二区久久精品| 国产精品一区二区久久| 国产一区视频网站| 亚洲国产乱码最新视频| 亚洲美女在线国产| 亚洲影院免费| 欧美在线三区| 牛牛国产精品| 一区电影在线观看| 欧美专区在线播放| 欧美国产日韩一区| 国产精品久久久久久久免费软件 |