• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            若我的小家

            -編程,讀書,感悟,旅游,設計
            posts - 21, comments - 0, trackbacks - 0, articles - 0
            C Run-Time Libraries 

            This topic discusses the various .lib files that comprise the C run-time libraries as well as their associated compiler options and preprocessor directives.

            The following libraries contain the C run-time library functions.

            C run-time library (without iostream or standard C++ library) Associated DLL Characteristics Option Preprocessor directives

            libcmt.lib

            None, static link.

            Multithreaded, static link

            /MT

            _MT

            msvcrt.lib

            msvcr80.dll

            Multithreaded, dynamic link (import library for MSVCR80.DLL). Be aware that if you use the Standard C++ Library, your program will need MSVCP80.DLL to run.

            /MD

            _MT, _DLL

            libcmtd.lib

            None, static link

            Multithreaded, static link (debug)

            /MTd

            _DEBUG, _MT

            msvcrtd.lib

            msvcr80d.dll

            Multithreaded, dynamic link (import library for MSVCR80D.DLL) (debug).

            /MDd

            _DEBUG, _MT, _DLL

            msvcmrt.lib

            msvcm80.dll

            C Runtime import library. Used for mixed managed/native code.

            /clr

             

            msvcurt.lib

            msvcm80.dll

            C Runtime import library compiled as 100% pure MSIL code. All code complies with the ECMA URT spec for MSIL.

            /clr:pure

             

            NoteNote

            The single-threaded CRT (libc.lib, libcd.lib) (formerly the /ML or /MLd options) is no longer available. Instead, use the multithreaded CRT. See Multithreaded Libraries Performance.

            If you link your program from the command line without a compiler option that specifies a C run-time library, the linker will use LIBCMT.LIB. This is different from previous versions of Visual C++ which used LIBC.LIB, the single-threaded library, instead.

            Using the statically linked CRT implies that any state information saved by the C runtime library will be local to that instance of the CRT. For example, if you use strtok, _strtok_l, wcstok, _wcstok_l, _mbstok, _mbstok_l when using a statically linked CRT, the position of the strtok parser is unrelated to the strtok state used in code in the same process (but in a different DLL or EXE) that is linked to another instance of the static CRT. In contrast, the dynamically linked CRT shares state for all code within a process that is dynamically linked to the CRT. This concern does not apply if you use the new more secure versions of these functions; for example, strtok_s does not have this problem.

            Because a DLL built by linking to a static CRT will have its own CRT state, it is not recommended to link statically to the CRT in a DLL unless the consequences of this are specifically desired and understood. For example, if you call _set_se_translator in an executable that loads the DLL linked to its own static CRT, any hardware exceptions generated by the code in the DLL will not be caught by the translator, but hardware exceptions generated by code in the main executable will be caught.

            If you are using the /clr compiler switch, your code will be linked with an import library, msvcmrt.lib. The import library references a new library, msvcm80.dll, which provides a proxy between your managed code and the native CRT. You cannot use the statically linked CRT ( /MT or /MTd options) with /clr. Use the dynamically-linked libraries (/MD or /MDd) instead.

            If you are using the /clr:pure compiler switch, your code will be linked with the import library msvcurt.lib, which also references msvcm80.dll. As with /clr, you cannot link with the statically linked library.

            For more information on using the CRT with /clr, see Mixed (Native and Managed) Assemblies; for /clr:pure, see Pure and Verifiable Code.

            To build a debug version of your application, the _DEBUG flag must be defined and the application must be linked with a debug version of one of these libraries. For more information about using the debug versions of the library files, see CRT Debugging Techniques.

            This version of Visual C++ is not conformant with the C99 standard.

            Standard C++ Library Characteristics Option Preprocessor directives

            LIBCPMT.LIB

            Multithreaded, static link

            /MT

            _MT

            MSVCPRT.LIB

            Multithreaded, dynamic link (import library for MSVCP80.dll)

            /MD

            _MT, _DLL

            LIBCPMTD.LIB

            Multithreaded, static link

            /MTd

            _DEBUG, _MT

            MSVCPRTD.LIB

            Multithreaded, dynamic link (import library for MSVCP80D.DLL)

            /MDd

            _DEBUG, _MT, _DLL

            Note   Starting in Visual C++ 2005, LIBCP.LIB and LIBCPD.LIB (via the old /ML and /MLd options) have been removed. Use LIBCPMT.LIB and LIBCPMTD.LIB instead via the /MT and /MTd options.

            When you build a release version of your project, one of the basic C run-time libraries (LIBCMT.LIB, MSVCMRT.LIB, MSVCRT.LIB) is linked by default, depending on the compiler option you choose (multithreaded, DLL, /clr). If you include one of the Standard C++ Library Header Files in your code, a Standard C++ Library will be linked in automatically by Visual C++ at compile time. For example:

            #include <ios> 

            The msvcrt.dll is now a "known DLL," meaning that it is a system component owned and built by Windows. It is intended for future use only by system-level components.

            If you have a .lib or .obj file that needs to link to msvcrt.lib, then you should not have to recompile it to work with the new msvcrt.lib in Visual C++ 2005. The .lib or .obj file may rely on the sizes, field offsets, or member function names of various CRT classes or variables, and those should all still exist in a compatible way. When you relink against msvcrt.lib, your final EXE and DLL image will now have a dependency on msvcr80.dll instead of msvcrt.dll.

            If you have more than one DLL or EXE, then you may have more than one CRT, whether or not you are using different versions of Visual C++. For example, statically linking the CRT into multiple DLLs can present the same problem. Developers encountering this problem with static CRTs have been instructed to compile with /MD to use the CRT DLL. Now that the CRT DLL has been renamed to msvcr80.dll, applications may have some components linked to msvcrt.dll and others to msvcr80.dll. If your DLLs pass CRT resources across the msvcrt.dll and msvcr80.dll boundary, you will encounter issues with mismatched CRTs and need to recompile your project with Visual C++ 2005.

            If your program is using more than one version of the CRT, some care is needed when passing certain CRT objects (such as file handles, locales and environment variables) across DLL boundaries. For more information on the issues involved and how to resolve them, see Potential Errors Passing CRT Objects Across DLL Boundaries.

            伊人久久大香线蕉亚洲五月天| 91久久精品国产免费直播| 欧美午夜精品久久久久久浪潮| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 精品久久久久久无码国产| 久久强奷乱码老熟女网站| 97精品伊人久久大香线蕉app| 91精品婷婷国产综合久久| 久久无码高潮喷水| 久久最近最新中文字幕大全| 亚洲国产天堂久久综合| 久久er热视频在这里精品| 久久久久99这里有精品10| 91麻豆精品国产91久久久久久| 成人综合久久精品色婷婷| 亚洲狠狠综合久久| 亚洲欧美另类日本久久国产真实乱对白 | 亚洲国产香蕉人人爽成AV片久久| 日韩精品无码久久久久久| 久久精品一区二区三区中文字幕| 婷婷久久久亚洲欧洲日产国码AV| 精品综合久久久久久88小说| av午夜福利一片免费看久久| 国产成人无码精品久久久性色| 国产成人精品久久综合| 久久久青草久久久青草| 欧美熟妇另类久久久久久不卡 | 色偷偷88欧美精品久久久| 国产精品久久久天天影视香蕉| 亚洲精品无码久久久久| 精品久久久久成人码免费动漫 | 久久久久久毛片免费看| 亚洲精品高清国产一久久| 91精品国产综合久久精品| 久久99国产精品尤物| 无码人妻精品一区二区三区久久久| 亚洲精品WWW久久久久久| 麻豆久久久9性大片| 亚洲精品视频久久久| 久久99久久99精品免视看动漫| 色播久久人人爽人人爽人人片AV|