青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++研究

C++細節深度探索及軟件工程

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

E.G
Define the Range from 1-100;

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Print Prime Table in RANGE(1-100)
*********************************************************************/

The Code Here :

 


#include 
<iostream>
#include 
<algorithm>
#include 
<vector>
using namespace std;

void InitArray(int A[] ,int len)
{
    
for (int i=0;i<len;i++)
    
{
        A[i]
=i+1;
    }

}


void OutputPrime(int A[] ,int len)
{
  
for (int i=2;i<len;i++)
  
{
      
for (int j=2;i*j<=len;j++)
      
{
          A[i
*j-1]=0;
          cout
<<i<<","<<j<<","<<i*j<<endl;
      }

     
  }

  
for (i=0;i<len;i++)
  
{
      
if (A[i]!=0)
      
{
          cout
<<A[i]<<" ";
      }

      
  }

  cout
<<endl;
}

// Main Method [4/19/2007 Changxinglong (King.C)]
int main(int argc, char* argv[])
{
    
int A[100];
    InitArray(A,
100);
    OutputPrime(A,
100);
    
return 1;
}




 2.THE DIRECT METHOD

E.G

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Prime ?
*********************************************************************/

Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

 

 1//predicate, which returns whether an integer is a prime number
 2bool isPrime (int number)
 3{
 4//ignore negative sign
 5number = abs(number);
 6// 0 and 1 are prime numbers
 7if (number == 0 || number == 1{
 8return true;
 9}

10//find divisor that divides without a remainder
11int divisor;
12for (divisor = number/2; number%divisor != 0--divisor) {
13;
14}

15//if no divisor greater than 1 is found, it is a prime number
16return divisor == 1;
17}


In Main Function , traverse the given range judge every number use the above function:

int main(int argc , char * argv[])
{
  
int A[100];
  InitArray(A,
100);
  
for(int i=0;i<100;i++)
    
if(isPrime(A[i]))
       cout
<<A[i]<<endl;
}

3. Extention
 Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
int main()
{
list
<int> coll;
//insert elements from 1 to 100
for (int i=1; i<=100++i) {
coll.push_back(i);
}

//search for prime number
list<int>::iterator pos;
pos 
= find_if (coll.begin(), coll.end(), //range
isPrime); //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}

else {
//not found
cout << "no prime number found" << endl;
}

}


posted on 2007-04-19 03:05 常興龍 閱讀(1360) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

評論

# re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
Write well!
I think tha IsPrime funtion shoule be implemented as a functors!
it may be more elegant!
class IsPrime{
public:
IsPrime(){
}
bool isPrime (int number)
{
.....
}
};  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
這應該是最原始的辦法  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
有一些很好的隨機算法  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

http://mathworld.wolfram.com/PrimalityTest.html  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學計算機學院 常興龍
Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復  更多評論
  

# re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
Thanks a lot for talk so much!  回復  更多評論
  

# re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
數論學家利用費馬小定理研究出了多種素數測試方法,目前最快的算法是拉賓米
勒測試算法,其過程如下:
(1)計算奇數M,使得N=(2**r)*M+1
(2)選擇隨機數A<N
(3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數A的測試
(4)或者,若A**M MOD N = 1,則N通過隨機數A的測試
(5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數
若N 通過一次測試,則N 不是素數的概率為 25%,若N 通過t 次測試,則N 不是
素數的概率為1/4**t。事實上取t 為5 時,N 不是素數的概率為 1/128,N 為素數的
概率已經大于99.99%。
在實際應用中,可首先用300—500個小素數對N 進行測試,以提高拉賓米勒測試
通過的概率,從而提高測試速度。而在生成隨機素數時,選取的隨機數最好讓 r=0,
則可省去步驟(3) 的測試,進一步提高測試速度
  回復  更多評論
  

# re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
@我們一起來提高
現在最快的是AKS...  回復  更多評論
  

> hi的博客
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            999亚洲国产精| 一区二区国产日产| 久久久最新网址| 在线日韩精品视频| 亚洲高清视频在线| 欧美国产日韩在线| 亚洲一区二区三区视频播放| 一区二区电影免费观看| 国产精品视频一二三| 欧美综合二区| 久久精品99国产精品| 亚洲人成小说网站色在线| 99精品国产99久久久久久福利| 国产精品福利影院| 久久在线免费观看| 欧美日韩国产精品专区| 亚洲欧美日本视频在线观看| 久久精品国产亚洲a| 9i看片成人免费高清| 亚洲综合国产| 亚洲乱码国产乱码精品精可以看| 99re视频这里只有精品| 国产一区二区日韩| 亚洲欧洲日产国产网站| 国产一区 二区 三区一级| 欧美国产专区| 国产精品一区二区三区四区 | 国产精品自拍网站| 欧美成年人网| 国产精品一区二区a| 欧美va亚洲va国产综合| 国产精品乱码| 免费在线日韩av| 国产精品亚洲视频| 亚洲精品女人| 国产一区二区三区免费观看 | 亚洲欧美在线一区| 欧美黑人在线播放| 久久亚洲国产精品一区二区| 国产精品第一区| 欧美高清视频在线观看| 亚洲欧美国产制服动漫| 一区二区三区四区在线| 久久国产免费看| 欧美国产精品一区| 国产精品网站在线播放| 亚洲精品视频免费在线观看| 国内揄拍国内精品少妇国语| 亚洲欧美激情视频| 午夜精品一区二区三区四区| 欧美日韩mp4| 亚洲国产精品嫩草影院| 伊人成人在线| 欧美在线播放一区| 午夜激情综合网| 欧美午夜精品久久久久久久| 亚洲激情在线观看| 91久久久在线| 欧美国产视频在线观看| 欧美高清视频在线| 亚洲三级免费观看| 欧美成人午夜77777| 亚洲夫妻自拍| 亚洲精品久久久久久下一站| 欧美成人精品不卡视频在线观看| 快射av在线播放一区| 尤物九九久久国产精品的特点| 欧美伊人影院| 免费h精品视频在线播放| 一区在线影院| 欧美成人官网二区| 亚洲激情中文1区| 一本色道久久88精品综合| 欧美激情亚洲国产| 日韩天堂av| 午夜欧美不卡精品aaaaa| 国产亚洲精品久久久久动| 欧美怡红院视频一区二区三区| 久久av资源网| 亚洲第一黄色网| 欧美高清视频在线| 在线视频你懂得一区二区三区| 亚洲综合日韩在线| 国产一区二区三区最好精华液| 久久国产欧美精品| 最新国产拍偷乱拍精品 | 欧美精品电影| 亚洲欧美成人综合| 欧美成人乱码一区二区三区| 99国产精品99久久久久久粉嫩| 欧美日韩卡一卡二| 欧美夜福利tv在线| 亚洲国产日韩欧美一区二区三区| 一区二区三区四区蜜桃| 国产亚洲精品7777| 欧美大尺度在线| 亚洲一区二区伦理| 麻豆久久婷婷| 亚洲免费视频成人| 亚洲狠狠婷婷| 国产模特精品视频久久久久| 久久综合综合久久综合| 亚洲午夜精品网| 欧美国内亚洲| 久久黄色小说| 中国成人黄色视屏| 在线精品一区| 国产精品三上| 欧美va天堂在线| 亚洲男人的天堂在线| 亚洲欧洲一区二区天堂久久| 久久精品国产综合精品| 亚洲私人影院在线观看| 在线观看亚洲| 国产午夜一区二区三区| 欧美日韩另类字幕中文| 免费久久99精品国产自| 欧美在线|欧美| 一区二区三区四区国产| 欧美激情一区在线观看| 久久久久一区| 欧美一级视频免费在线观看| 一本久久青青| 日韩视频―中文字幕| 精品动漫一区| 国产综合自拍| 国产免费成人av| 国产精品v欧美精品v日韩| 欧美激情片在线观看| 美女精品一区| 久久爱www久久做| 欧美一区亚洲| 久久久91精品国产一区二区精品| 亚洲一区二区三区午夜| 9i看片成人免费高清| 亚洲精品一区二区三区婷婷月| 亚洲国产免费看| 亚洲福利视频二区| 亚洲高清资源综合久久精品| 欧美成人一区二区三区在线观看 | aa日韩免费精品视频一| 99精品视频一区| 夜夜嗨av一区二区三区四区 | 亚洲国产成人精品久久久国产成人一区| 国产精品一区二区三区观看| 国产精品日韩欧美一区二区三区| 欧美日韩中文在线| 欧美色中文字幕| 国产精品理论片| 国产亚洲精品一区二555| 国户精品久久久久久久久久久不卡 | 一区二区国产在线观看| 亚洲午夜久久久| 亚洲欧美在线免费| 久久九九热免费视频| 美女国内精品自产拍在线播放| 浪潮色综合久久天堂| 麻豆91精品| 欧美大片专区| 欧美日韩亚洲高清一区二区| 国产精品久久久久久福利一牛影视| 国产精品亚洲综合天堂夜夜| 国产精品久久久久9999高清| 国产农村妇女精品| 一区二区在线观看视频| 亚洲美女av在线播放| 亚洲尤物精选| 久久精品水蜜桃av综合天堂| 免费日韩精品中文字幕视频在线| 亚洲电影免费观看高清| 在线一区亚洲| 久久黄色级2电影| 欧美剧在线免费观看网站| 国产精品久久久久一区二区三区| 国产三级欧美三级日产三级99| 在线观看国产欧美| 亚洲女女女同性video| 久久国产精品一区二区三区| 免费亚洲一区| 在线一区二区日韩| 蜜桃av一区二区在线观看| 欧美午夜激情在线| 伊人成人在线视频| 亚洲制服少妇| 欧美成人一区二区三区片免费| 一区二区三区视频免费在线观看| 久久久91精品国产| 欧美日韩一二区| 亚洲观看高清完整版在线观看| 亚洲欧美三级在线| 亚洲国产电影| 久久久精品一区| 国产精品羞羞答答| 亚洲作爱视频| 欧美a级一区二区| 午夜精彩国产免费不卡不顿大片| 欧美激情麻豆| 在线高清一区| 巨乳诱惑日韩免费av| 欧美亚洲在线观看|