青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++研究

C++細節(jié)深度探索及軟件工程

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

E.G
Define the Range from 1-100;

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Print Prime Table in RANGE(1-100)
*********************************************************************/

The Code Here :

 


#include 
<iostream>
#include 
<algorithm>
#include 
<vector>
using namespace std;

void InitArray(int A[] ,int len)
{
    
for (int i=0;i<len;i++)
    
{
        A[i]
=i+1;
    }

}


void OutputPrime(int A[] ,int len)
{
  
for (int i=2;i<len;i++)
  
{
      
for (int j=2;i*j<=len;j++)
      
{
          A[i
*j-1]=0;
          cout
<<i<<","<<j<<","<<i*j<<endl;
      }

     
  }

  
for (i=0;i<len;i++)
  
{
      
if (A[i]!=0)
      
{
          cout
<<A[i]<<" ";
      }

      
  }

  cout
<<endl;
}

// Main Method [4/19/2007 Changxinglong (King.C)]
int main(int argc, char* argv[])
{
    
int A[100];
    InitArray(A,
100);
    OutputPrime(A,
100);
    
return 1;
}




 2.THE DIRECT METHOD

E.G

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Prime ?
*********************************************************************/

Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

 

 1//predicate, which returns whether an integer is a prime number
 2bool isPrime (int number)
 3{
 4//ignore negative sign
 5number = abs(number);
 6// 0 and 1 are prime numbers
 7if (number == 0 || number == 1{
 8return true;
 9}

10//find divisor that divides without a remainder
11int divisor;
12for (divisor = number/2; number%divisor != 0--divisor) {
13;
14}

15//if no divisor greater than 1 is found, it is a prime number
16return divisor == 1;
17}


In Main Function , traverse the given range judge every number use the above function:

int main(int argc , char * argv[])
{
  
int A[100];
  InitArray(A,
100);
  
for(int i=0;i<100;i++)
    
if(isPrime(A[i]))
       cout
<<A[i]<<endl;
}

3. Extention
 Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
int main()
{
list
<int> coll;
//insert elements from 1 to 100
for (int i=1; i<=100++i) {
coll.push_back(i);
}

//search for prime number
list<int>::iterator pos;
pos 
= find_if (coll.begin(), coll.end(), //range
isPrime); //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}

else {
//not found
cout << "no prime number found" << endl;
}

}


posted on 2007-04-19 03:05 常興龍 閱讀(1361) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

評論

# re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
Write well!
I think tha IsPrime funtion shoule be implemented as a functors!
it may be more elegant!
class IsPrime{
public:
IsPrime(){
}
bool isPrime (int number)
{
.....
}
};  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
這應(yīng)該是最原始的辦法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
有一些很好的隨機算法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

http://mathworld.wolfram.com/PrimalityTest.html  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學(xué)計算機學(xué)院 常興龍
Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
Thanks a lot for talk so much!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
數(shù)論學(xué)家利用費馬小定理研究出了多種素數(shù)測試方法,目前最快的算法是拉賓米
勒測試算法,其過程如下:
(1)計算奇數(shù)M,使得N=(2**r)*M+1
(2)選擇隨機數(shù)A<N
(3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數(shù)A的測試
(4)或者,若A**M MOD N = 1,則N通過隨機數(shù)A的測試
(5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數(shù)
若N 通過一次測試,則N 不是素數(shù)的概率為 25%,若N 通過t 次測試,則N 不是
素數(shù)的概率為1/4**t。事實上取t 為5 時,N 不是素數(shù)的概率為 1/128,N 為素數(shù)的
概率已經(jīng)大于99.99%。
在實際應(yīng)用中,可首先用300—500個小素數(shù)對N 進行測試,以提高拉賓米勒測試
通過的概率,從而提高測試速度。而在生成隨機素數(shù)時,選取的隨機數(shù)最好讓 r=0,
則可省去步驟(3) 的測試,進一步提高測試速度
  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
@我們一起來提高
現(xiàn)在最快的是AKS...  回復(fù)  更多評論
  

> hi的博客
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲综合国产激情另类一区| 亚洲精品一区二区三区婷婷月| 亚洲国产精品ⅴa在线观看| 欧美在线视频观看免费网站| 亚洲欧美激情精品一区二区| 国产日韩欧美视频在线| 久久精品一区中文字幕| 久久成人精品一区二区三区| 在线精品在线| 亚洲理论电影网| 国产精品亚洲综合| 久久亚洲欧洲| 欧美成va人片在线观看| 在线亚洲一区观看| 亚洲自拍啪啪| 91久久在线观看| 亚洲图片你懂的| 精品av久久707| 99精品99| 亚洲高清在线观看| 亚洲视频在线免费观看| 伊人婷婷久久| 夜夜嗨av一区二区三区网站四季av| 国产精品美女久久久久av超清| 久久亚洲国产成人| 欧美日韩国语| 美女主播一区| 国产精品九色蝌蚪自拍| 欧美不卡视频一区发布| 国产精品男女猛烈高潮激情| 免费观看久久久4p| 国产精品网站在线观看| 亚洲国产欧美国产综合一区| 国产精品萝li| 最新日韩av| 国产一区二区三区四区hd| 亚洲精品国产精品国自产观看| 国产一区二区三区在线观看网站| 亚洲国内欧美| 亚洲高清二区| 欧美一区二区三区日韩| 亚洲伊人网站| 欧美精品一区二区三区一线天视频 | 欧美xart系列高清| 欧美一区在线直播| 欧美美女视频| 欧美成人一区二区三区| 国产一区二区成人| 亚洲尤物视频在线| 国产亚洲精品久久久久婷婷瑜伽| 亚洲另类在线视频| 亚洲区在线播放| 久热爱精品视频线路一| 久久久久一区二区| 国产欧美大片| 亚洲一区二区三区涩| 亚洲一区在线观看免费观看电影高清 | 久久久久久久综合狠狠综合| 国产精品美女久久久久av超清| 亚洲人体偷拍| 日韩视频一区| 欧美精品一区视频| 亚洲精品国产日韩| 亚洲色图制服丝袜| 欧美午夜电影在线观看| aa级大片欧美三级| 亚洲一区在线直播| 国产乱码精品一区二区三区五月婷 | 香蕉视频成人在线观看| 久久久久久久尹人综合网亚洲| 久久精品国产综合| 国产视频亚洲精品| 久久久精品五月天| 欧美风情在线| 日韩一级黄色av| 欧美日韩在线综合| 亚洲主播在线播放| 久久免费精品视频| 亚洲电影在线| 欧美精品一区二区高清在线观看| 亚洲乱码久久| 欧美在线免费| 在线观看国产日韩| 欧美激情精品久久久久久变态| 日韩视频久久| 久久精品91| 91久久久久久国产精品| 欧美日韩视频免费播放| 午夜精品国产更新| 欧美高清视频一区二区| 亚洲一二三区视频在线观看| 国产性猛交xxxx免费看久久| 蜜臀久久99精品久久久久久9| 亚洲毛片一区二区| 久久久精品999| 亚洲美女电影在线| 国产亚洲观看| 欧美精品一区二区久久婷婷| 午夜精品成人在线| 亚洲黄色影片| 久久久国产午夜精品| 一区二区不卡在线视频 午夜欧美不卡在 | 欧美一级淫片aaaaaaa视频| 美日韩精品免费| 亚洲影院色无极综合| 在线观看日韩专区| 国产精品卡一卡二卡三| 美女福利精品视频| 先锋影音国产精品| 亚洲人成网站777色婷婷| 久久精品国产欧美亚洲人人爽| 亚洲精品激情| 精品av久久久久电影| 国产精品美女一区二区在线观看| 久久视频一区| 亚洲免费av片| 欧美日韩国产色综合一二三四 | 欧美日韩国产91| 久久精品国产免费| 亚洲午夜激情| 亚洲精品黄色| 女仆av观看一区| 久久国产欧美日韩精品| 亚洲一级影院| 99热这里只有精品8| 亚洲福利视频二区| 狠狠色狠狠色综合日日五| 国产精品亚洲аv天堂网| 欧美日韩另类在线| 欧美激情亚洲另类| 久色婷婷小香蕉久久| 久久成人国产精品| 欧美一区二区大片| 午夜精品福利电影| 午夜精品久久久久久久久 | 久久精品视频导航| 欧美一区二区三区在线观看视频| 亚洲视频一区在线观看| 日韩午夜av电影| 亚洲伦理在线免费看| 亚洲精品欧美激情| 一区二区三欧美| 一区二区欧美国产| 中文亚洲字幕| 亚洲欧美在线x视频| 国产精品永久免费视频| 国产精品日韩在线播放| 国产麻豆精品在线观看| 国产日韩av高清| 国产香蕉久久精品综合网| 国产日韩一区二区三区| 国产在线精品成人一区二区三区| 国产日韩精品久久久| 激情婷婷欧美| 亚洲激情六月丁香| 99精品国产在热久久| 一区二区三区四区国产| 午夜久久电影网| 久久免费一区| 亚洲电影免费观看高清完整版在线观看| 欧美大片在线看免费观看| 亚洲国产欧美一区二区三区久久 | 欧美日韩久久| 国产精品理论片| 激情小说另类小说亚洲欧美| 亚洲电影观看| 亚洲免费在线视频一区 二区| 午夜亚洲一区| 欧美成人免费小视频| 日韩亚洲国产欧美| 欧美在线视频日韩| 欧美精品日韩综合在线| 国产日韩精品一区二区| 亚洲国产美女精品久久久久∴| 在线天堂一区av电影| 久久精品一区二区三区不卡牛牛| 欧美肥婆bbw| 亚洲女女女同性video| 麻豆精品传媒视频| 国产精品久久久久婷婷| 亚洲电影第三页| 亚洲欧美日韩在线综合| 欧美国产日韩免费| 玖玖玖免费嫩草在线影院一区| 亚洲国内欧美| 久久婷婷亚洲| 欧美午夜片欧美片在线观看| 国内精品久久久久久久影视蜜臀| 日韩亚洲精品视频| 久久女同互慰一区二区三区| 日韩一级片网址| 久久亚洲影院| 国产伦精品一区二区三区照片91 | 亚洲欧美高清| 亚洲第一精品久久忘忧草社区| 亚洲欧美日韩国产综合精品二区| 欧美激情欧美狂野欧美精品| 黑人巨大精品欧美一区二区小视频| 在线视频日韩精品| 亚洲缚视频在线观看|