青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++研究

C++細節(jié)深度探索及軟件工程

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

E.G
Define the Range from 1-100;

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Print Prime Table in RANGE(1-100)
*********************************************************************/

The Code Here :

 


#include 
<iostream>
#include 
<algorithm>
#include 
<vector>
using namespace std;

void InitArray(int A[] ,int len)
{
    
for (int i=0;i<len;i++)
    
{
        A[i]
=i+1;
    }

}


void OutputPrime(int A[] ,int len)
{
  
for (int i=2;i<len;i++)
  
{
      
for (int j=2;i*j<=len;j++)
      
{
          A[i
*j-1]=0;
          cout
<<i<<","<<j<<","<<i*j<<endl;
      }

     
  }

  
for (i=0;i<len;i++)
  
{
      
if (A[i]!=0)
      
{
          cout
<<A[i]<<" ";
      }

      
  }

  cout
<<endl;
}

// Main Method [4/19/2007 Changxinglong (King.C)]
int main(int argc, char* argv[])
{
    
int A[100];
    InitArray(A,
100);
    OutputPrime(A,
100);
    
return 1;
}




 2.THE DIRECT METHOD

E.G

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Prime ?
*********************************************************************/

Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

 

 1//predicate, which returns whether an integer is a prime number
 2bool isPrime (int number)
 3{
 4//ignore negative sign
 5number = abs(number);
 6// 0 and 1 are prime numbers
 7if (number == 0 || number == 1{
 8return true;
 9}

10//find divisor that divides without a remainder
11int divisor;
12for (divisor = number/2; number%divisor != 0--divisor) {
13;
14}

15//if no divisor greater than 1 is found, it is a prime number
16return divisor == 1;
17}


In Main Function , traverse the given range judge every number use the above function:

int main(int argc , char * argv[])
{
  
int A[100];
  InitArray(A,
100);
  
for(int i=0;i<100;i++)
    
if(isPrime(A[i]))
       cout
<<A[i]<<endl;
}

3. Extention
 Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
int main()
{
list
<int> coll;
//insert elements from 1 to 100
for (int i=1; i<=100++i) {
coll.push_back(i);
}

//search for prime number
list<int>::iterator pos;
pos 
= find_if (coll.begin(), coll.end(), //range
isPrime); //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}

else {
//not found
cout << "no prime number found" << endl;
}

}


posted on 2007-04-19 03:05 常興龍 閱讀(1375) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

評論

# re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
Write well!
I think tha IsPrime funtion shoule be implemented as a functors!
it may be more elegant!
class IsPrime{
public:
IsPrime(){
}
bool isPrime (int number)
{
.....
}
};  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
這應(yīng)該是最原始的辦法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
有一些很好的隨機算法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

http://mathworld.wolfram.com/PrimalityTest.html  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學(xué)計算機學(xué)院 常興龍
Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
Thanks a lot for talk so much!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
數(shù)論學(xué)家利用費馬小定理研究出了多種素數(shù)測試方法,目前最快的算法是拉賓米
勒測試算法,其過程如下:
(1)計算奇數(shù)M,使得N=(2**r)*M+1
(2)選擇隨機數(shù)A<N
(3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數(shù)A的測試
(4)或者,若A**M MOD N = 1,則N通過隨機數(shù)A的測試
(5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數(shù)
若N 通過一次測試,則N 不是素數(shù)的概率為 25%,若N 通過t 次測試,則N 不是
素數(shù)的概率為1/4**t。事實上取t 為5 時,N 不是素數(shù)的概率為 1/128,N 為素數(shù)的
概率已經(jīng)大于99.99%。
在實際應(yīng)用中,可首先用300—500個小素數(shù)對N 進行測試,以提高拉賓米勒測試
通過的概率,從而提高測試速度。而在生成隨機素數(shù)時,選取的隨機數(shù)最好讓 r=0,
則可省去步驟(3) 的測試,進一步提高測試速度
  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
@我們一起來提高
現(xiàn)在最快的是AKS...  回復(fù)  更多評論
  

> hi的博客
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧洲精品成人久久奇米网| 亚洲精品一品区二品区三品区| 这里只有视频精品| 欧美激情视频一区二区三区在线播放 | 亚洲综合视频网| 国产精品二区在线| 欧美中文字幕| 亚洲欧美日韩网| 国产一区久久| 美女主播精品视频一二三四| 久久人人九九| 99国产一区| 亚洲一区二区在线免费观看视频 | 亚洲男人的天堂在线aⅴ视频| 国产精品你懂的在线| 午夜久久久久久久久久一区二区| 亚洲午夜电影网| 中日韩视频在线观看| 欧美视频中文字幕在线| 亚洲欧美日韩国产成人| 羞羞答答国产精品www一本| 精久久久久久久久久久| 亚洲国产精品久久久| 欧美日韩一区综合| 久久天天躁狠狠躁夜夜爽蜜月| 久久精品最新地址| 中文日韩欧美| 久久精品av麻豆的观看方式| 亚洲成色精品| 中日韩在线视频| 亚洲成人在线观看视频| av不卡在线| 在线欧美亚洲| 亚洲影音一区| 亚洲精品一区二区三区不| 亚洲自拍偷拍麻豆| 亚洲国产一区二区a毛片| 国产精品99久久99久久久二8 | 美女久久一区| 午夜久久影院| 欧美精品久久久久久久久老牛影院| 亚洲一区在线观看免费观看电影高清| 欧美一级专区免费大片| 亚洲天堂成人在线观看| 久久综合九色综合欧美狠狠| 亚洲欧美区自拍先锋| 男人的天堂亚洲| 久久国产福利| 国产精品国产一区二区| 亚洲第一精品电影| 国内成+人亚洲| 亚洲午夜av| 夜夜爽av福利精品导航| 老司机凹凸av亚洲导航| 久久精品国产亚洲5555| 国产精品xvideos88| 亚洲国产视频一区| 亚洲电影免费观看高清完整版在线| 国产精品99久久久久久久vr| 亚洲精品国产欧美| 男人天堂欧美日韩| 男女av一区三区二区色多| 国产精品亚洲аv天堂网| 99精品欧美一区| av不卡在线观看| 欧美精品在线一区二区| 亚洲日本中文字幕| 99pao成人国产永久免费视频| 久久一区二区三区超碰国产精品 | 1000精品久久久久久久久| 亚洲欧美精品在线| 性做久久久久久| 国产欧美日本一区视频| 亚洲校园激情| 欧美一区二区三区精品| 国产精品一二一区| 午夜精品久久久久久久白皮肤| 午夜精品一区二区在线观看| 国产精品美女久久久| 亚洲在线视频| 久久黄色级2电影| 激情91久久| 久久在精品线影院精品国产| 欧美黄免费看| 夜夜嗨av色综合久久久综合网| 欧美日韩国产一级片| 一区二区三区日韩精品| 欧美亚洲综合网| 韩国女主播一区| 玖玖精品视频| 一本久道久久综合狠狠爱| 亚洲一区网站| 国产亚洲成人一区| 美女脱光内衣内裤视频久久网站| 最近中文字幕mv在线一区二区三区四区| 91久久精品视频| 欧美三区在线| 久久av资源网| 亚洲人永久免费| 欧美在线观看视频一区二区| 在线不卡免费欧美| 欧美日韩亚洲一区二区三区在线观看| 亚洲深夜福利| 欧美1区2区3区| 亚洲欧美激情一区| 亚洲福利一区| 国产精品国产一区二区| 久久亚洲影音av资源网| 一本色道久久综合亚洲精品婷婷| 久久不射网站| 亚洲作爱视频| 影音先锋国产精品| 国产精品av久久久久久麻豆网| 亚洲欧美韩国| 亚洲欧洲在线一区| 久久精品噜噜噜成人av农村| 亚洲毛片视频| 激情文学综合丁香| 国产精品久久久久久久久久久久久久| 久久精品二区| 亚洲午夜精品一区二区| 欧美激情一区二区三区成人| 久久成人羞羞网站| 亚洲深夜福利在线| 亚洲国产片色| 1000部国产精品成人观看| 国产精品视频999| 欧美日韩1080p| 久热精品视频在线| 久久久av毛片精品| 欧美亚洲一区| 亚洲视频精品在线| 99在线视频精品| 亚洲福利视频免费观看| 噜噜噜久久亚洲精品国产品小说| 午夜视频在线观看一区| 中文国产一区| 99一区二区| 亚洲卡通欧美制服中文| 亚洲福利国产| 亚洲电影欧美电影有声小说| 国语自产精品视频在线看| 国产精品爽爽爽| 国产精品日韩电影| 国产精品网站在线观看| 国产精品久久久久国产精品日日| 欧美精品97| 欧美日韩国产探花| 欧美日韩一区综合| 国产精品国产三级国产普通话99 | 午夜精品在线看| 亚洲一区二区三区四区视频| 宅男66日本亚洲欧美视频| 亚洲精品专区| 日韩视频在线观看国产| 日韩亚洲国产精品| 夜夜嗨av一区二区三区中文字幕| 99国产麻豆精品| 亚洲午夜精品| 午夜亚洲性色福利视频| 欧美在线91| 欧美va亚洲va香蕉在线| 欧美精品一区二区三区在线播放 | 99精品欧美| 亚洲综合国产| 欧美在线一二三区| 另类专区欧美制服同性| 欧美波霸影院| 国产精品激情电影| 国产一二三精品| 亚洲国产精品成人一区二区 | 欧美日韩高清在线播放| 国产精品久久久久久久久| 欧美黑人多人双交| 亚洲私人影吧| 亚洲一区久久久| 久久精品国产999大香线蕉| 久热精品视频在线观看一区| 亚洲国产综合在线| 中文网丁香综合网| 久久久久成人精品免费播放动漫| 欧美国产日本| 国产欧美日韩在线观看| 亚洲黄色大片| 亚洲欧美怡红院| 亚洲国产成人av在线| 亚洲在线观看| 欧美成人一区二区三区片免费| 欧美日韩一级片在线观看| 国内成人精品视频| 亚洲午夜精品久久| 久久天天综合| 亚洲视频中文| 浪潮色综合久久天堂| 国产精品一级在线| 亚洲伦理在线| 蜜臀av国产精品久久久久| 亚洲图片欧美日产| 欧美激情一区二区在线| 精品成人久久|