• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            專注于c++

              C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
              21 Posts :: 0 Stories :: 4 Comments :: 0 Trackbacks

            常用鏈接

            留言簿(15)

            我參與的團隊

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            最優化原理
               1951年美國數學家R.Bellman等人,根據一類多階段問題的特點,把多階段決策問題變換為一系列互相聯系的單階段問題,然后逐個加以解決。一些靜態模型,只要人為地引進“時間”因素,分成時段,就可以轉化成多階段的動態模型,用動態規劃方法去處理。與此同時,他提出了解決這類問題的“最優化原理”(Principle of optimality):
                “一個過程的最優決策具有這樣的性質:即無論其初始狀態和初始決策如何,其今后諸策略對以第一個決策所形成的狀態作為初始狀態的過程而言,必須構成最優策略”。簡言之,一個最優策略的子策略,對于它的初態和終態而言也必是最優的。
                這個“最優化原理”如果用數學化一點的語言來描述的話,就是:假設為了解決某一優化問題,需要依次作出n個決策D1,D2,…,Dn,如若這個決策序列是最優的,對于任何一個整數k,1 < k < n,不論前面k個決策是怎樣的,以后的最優決策只取決于由前面決策所確定的當前狀態,即以后的決策Dk+1,Dk+2,…,Dn也是最優的。
                最優化原理是動態規劃的基礎。任何一個問題,如果失去了這個最優化原理的支持,就不可能用動態規劃方法計算。能采用動態規劃求解的問題都需要滿足一定的條件:
                (1) 問題中的狀態必須滿足最優化原理;
                (2) 問題中的狀態必須滿足無后效性。
                所謂的無后效性是指:“下一時刻的狀態只與當前狀態有關,而和當前狀態之前的狀態無關,當前的狀態是對以往決策的總結”。

            問題求解模式
                動態規劃所處理的問題是一個多階段決策問題,一般由初始狀態開始,通過對中間階段決策的選擇,達到結束狀態。這些決策形成了一個決策序列,同時確定了完成整個過程的一條活動路線(通常是求最優的活動路線)。如圖所示。動態規劃的設計都有著一定的模式,一般要經歷以下幾個步驟。
            
               初始狀態→│決策1│→│決策2│→…→│決策n│→結束狀態
                 圖1 動態規劃決策過程示意圖

                (1)劃分階段:按照問題的時間或空間特征,把問題分為若干個階段。在劃分階段時,注意劃分后的階段一定要是有序的或者是可排序的,否則問題就無法求解。
                (2)確定狀態和狀態變量:將問題發展到各個階段時所處于的各種客觀情況用不同的狀態表示出來。當然,狀態的選擇要滿足無后效性。
                (3)確定決策并寫出狀態轉移方程:因為決策和狀態轉移有著天然的聯系,狀態轉移就是根據上一階段的狀態和決策來導出本階段的狀態。所以如果確定了決策,狀態轉移方程也就可寫出。但事實上常常是反過來做,根據相鄰兩段各狀態之間的關系來確定決策。
                (4)尋找邊界條件:給出的狀態轉移方程是一個遞推式,需要一個遞推的終止條件或邊界條件。

            算法實現
                動態規劃的主要難點在于理論上的設計,也就是上面4個步驟的確定,一旦設計完成,實現部分就會非常簡單。使用動態規劃求解問題,最重要的就是確定動態規劃三要素:問題的階段,每個階段的狀態以及從前一個階段轉化到后一個階段之間的遞推關系。遞推關系必須是從次小的問題開始到較大的問題之間的轉化,從這個角度來說,動態規劃往往可以用遞歸程序來實現,不過因為遞推可以充分利用前面保存的子問題的解來減少重復計算,所以對于大規模問題來說,有遞歸不可比擬的優勢,這也是動態規劃算法的核心之處。確定了動態規劃的這三要素,整個求解過程就可以用一個最優決策表來描述,最優決策表是一個二維表,其中行表示決策的階段,列表示問題狀態,表格需要填寫的數據一般對應此問題的在某個階段某個狀態下的最優值(如最短路徑,最長公共子序列,最大價值等),填表的過程就是根據遞推關系,從1行1列開始,以行或者列優先的順序,依次填寫表格,最后根據整個表格的數據通過簡單的取舍或者運算求得問題的最優解。下面分別以求解最大化投資回報問題和最長公共子序列問題為例闡述用動態規劃算法求解問題的一般思路。

            1. 最大化投資回報問題:某人有一定的資金用來購買不同面額的債卷,不同面額債卷的年收益是不同的,求給定資金,年限以及債卷面額、收益的情況下怎樣購買才能使此人獲得最大投資回報。
                程序輸入約定:第一行第一列表示資金(1000的倍數)總量,第二列表示投資年限;第二行表示債卷面額總數;從第三行開始每行表示一種債卷,占用兩列,前一列表示債卷面額,后一列表示其年收益,如下輸入實例,
            10000 1
            2
            4000 400
            3000 250
            程序實現如下,注釋幾乎說明了一切,所以不再另外分析。
            /// 此數組是算法的關鍵存儲結構,用來存儲不同階段各種債卷
            /// 組合下對應可獲取的最大利息。
            int saifa[80005];

            /// 此函數用于計算當前債卷在不同購買額下的最優利息情況,
            /// 注意此時的利息情況是基于上一次債卷的情況下計算得到的,
            /// 也就是說當前利息最優是基于上一次利息最優的基礎上計算出來的,
            /// 這也正好體現了動態規劃中“最優化原則”:不管前面的策略如何,
            /// 此后的決策必須是基于當前狀態(由上一次決策產生)的最優決策。
            /*
                動態規劃的求解過程一般都可以用一個最優決策表來描述,
                對于本程序,以示例輸入為例,對于第一年,其最優決策表如下:
                0 1 2 3   4   5   6   7   8   9   10(*1000)  -- (1)
                0 0 0 0   400 400 400 400 800 800 800        -- (2)
                0 0 0 250 400 400 500 650 800 900 900        -- (3)
                (1) -- 表示首先選利息為400的債卷在對應資金下的最優利息。
                (2) -- 表示可用來購買債卷的資金。
                (3) -- 表示在已有狀態下再選擇利息為300的債卷在對應資金下的最優利息。
                注意上面表格,在求購買利息為300的債卷獲得的最優收益的時候,
                參考了以前的最優狀態,以3行8列的650為例,7(*1000)可以
                在以前購買了0張4000的債卷的基礎上再2張3000的,也可以在以前購
                買了1張4000的基礎上再買1張3000,經比較取其收益大的,這就是典
                型的動態規劃中的當前最優狀態計算。
                本程序中把上面的最優決策二維表用一個一維數組表示,值得借鑒。
            */
            void add(int a,int b)
            { cout << a << " " << b << endl; // for debug
             for(int i=0;i<=80000;i++)
             {
              if(i+a > 80000)
              {
               break;
              }

              if(saifa[i]+b > saifa[i+a]) // 累計同時購買多種債卷時的利息
              {
               saifa[i+a] = saifa[i] + b;
              }

              if(i<200) // for debug
               cout << i << "-" << saifa[i] << " ";
             }
             cout << endl; // for debug
            }

            int main(void)
            {
             int n,d,money,year,pay,bond;
             int ii,i;

             scanf("%d",&n);
             for(ii=0;ii<n;ii++)
             {
              memset(saifa,0,sizeof(saifa));
              scanf("%d%d",&money,&year);
              scanf("%d",&d);

              for(i=0;i<d;i++)
              {
               scanf("%d%d",&pay,&bond);
               add(pay/1000,bond);
              }

              // 計算指定年限內最優組合的本金利息總額
              for(i=0;i<year;i++)
              { cout << saifa[money/1000] << " "; // for debug
               money += saifa[money/1000];
              }
              cout << endl; // for debug

              printf("%d\n",money);
             }

             return 0;
            }
            上述程序實現方法同樣適合于背包問題,最優庫存問題等,只是針對具體情況,最優決策表的表示和生成會有所不同。

            2. 最長公共子串問題:一個給定序列的子序列是在該序列中刪去若干元素后得到的序列。給定兩個序列X和Y,當另一序列Z既是X的子序列又是Y的子序列時,稱Z是序列X和Y的公共子序列。最長公共子串就是求給定兩個序列的一個最長公共子序列。例如,X=“ABCBDAB”,Y=“BCDB”是X的一個子序列。
            問題分析:
                給定兩個序列A和B,稱序列Z是A和B的公共子序列,是指Z同是A和B的子序列。問題要求已知兩序列A和B的最長公共子序列。如采用列舉A的所有子序列,并一一檢查其是否又是B的子序列,并隨時記錄所發現的子序列,最終求出最長公共子序列。這種方法因耗時太多而不可取。
                考慮最長公共子序列問題如何分解成子問題,設A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”為它們的最長公共子序列。不難證明有以下性質:
            (1) 如果am-1=bn-1,則zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一個最長公共子序列;
            (2) 如果am-1!=bn-1,則若zk-1!=am-1,蘊涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一個最長公共子序列;
            (3) 如果am-1!=bn-1,則若zk-1!=bn-1,蘊涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一個最長公共子序列。
            這樣,在找A和B的公共子序列時,如有am-1=bn-1,則進一步解決一個子問題,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一個 最長公共子序列;如果am-1!=bn-1,則要解決兩個子問題,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一個最長公共子序列 和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一個最長公共子序列,再取兩者中較長者作為A和B的最長公共子序列。
                為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存于該數組中,這就是動態規劃法所采用的基本方法,具體說明如下。
            定義c[i][j]為序列“a0,a1,…,ai-2”和“b0,b1,…,bj-1”的最長公共子序列的長度,計算c[i][j]可遞歸地表述如下:
            (1)c[i][j] = 0                         如果i=0或j=0;
            (2)c[i][j] = c[i-1][j-1]+1             如果i,j>0,且a[i-1] = b[j-1];
            (3)c[i][j] = max{c[i][j-1], c[i-1][j]} 如果i,j>0,且a[i-1] != b[j-1]。
            按此算式可寫出計算兩個序列的最長公共子序列的長度函數。由于c[i][j]的產生僅依賴于c[i-1][j-1]、c[i-1][j]和c[i][j-1],故可以從c[m][n]開始,跟蹤c[i][j]的產生過程,逆向構造出最長公共子序列。細節見程序。


            #include <stdio.h>
            #include <string.h>

            #define N 100

            char a[N], b[N], str[N];
            int c[N][N];

            int lcs_len(char* a, char* b, int c[][N])
            {
                int m = strlen(a), n = strlen(b), i, j;

                for( i=0; i<=m; i++ )    
                    c[i][0]=0;
                for( i=0; i<=n; i++ )    
                    c[0][i]=0;

                for( i=1; i<=m; i++ ) 
                {
                    for( j=1; j<=n; j++ )
                    {
                        if (a[i-1]==b[j-1])
                            c[i][j]=c[i-1][j-1]+1;
                        else if (c[i-1][j]>=c[i][j-1])
                            c[i][j]=c[i-1][j];
                        else
                            c[i][j]=c[i][j-1];
                    }
                }

                return c[m][n];
            }

            char* build_lcs(char s[], char* a, char* b)
            {
                int i = strlen(a), j = strlen(b);
                int k = lcs_len(a,b,c);
                s[k] = '\0';
                while( k>0 )
                {
                    if (c[i][j]==c[i-1][j]) 
                        i--;
                    else if (c[i][j]==c[i][j-1]) 
                        j--;
                    else
                    {
                        s[--k]=a[i-1];
                        i--; j--;
                    }
                }

                return s;
            }

            void main()

                printf("Enter two string (length < %d) :\n",N);
                scanf("%s%s",a,b);
                printf("LCS=%s\n",build_lcs(str,a,b));
            }

            posted on 2009-10-04 13:13 bellgrade 閱讀(998) 評論(0)  編輯 收藏 引用 所屬分類: 數據結構算法
            久久婷婷色综合一区二区| 久久精品国产一区二区三区日韩| 久久久久免费精品国产| 国产亚州精品女人久久久久久| 久久精品成人免费国产片小草| 亚洲国产精品无码久久九九| 久久精品国产乱子伦| 国产精品狼人久久久久影院| 久久精品国产亚洲AV蜜臀色欲| 韩国免费A级毛片久久| 日本久久久久久久久久| 99久久精品国产免看国产一区| 91精品国产高清久久久久久91| 久久亚洲国产精品成人AV秋霞| 久久久一本精品99久久精品88| 国产精品成人精品久久久| 久久婷婷五月综合色奶水99啪| 欧美精品一区二区精品久久| 亚洲精品乱码久久久久66| 久久久精品视频免费观看| 久久国产亚洲高清观看| 一97日本道伊人久久综合影院| 国产精品久久免费| 久久久国产精品亚洲一区| 久久婷婷国产剧情内射白浆| 国产精品亚洲综合专区片高清久久久| 无码超乳爆乳中文字幕久久 | 亚洲国产精久久久久久久| 亚洲欧美伊人久久综合一区二区| 亚洲AⅤ优女AV综合久久久| 麻豆精品久久精品色综合| 99久久综合狠狠综合久久止| 久久婷婷色综合一区二区| 久久久久久亚洲精品影院| 青青青青久久精品国产h久久精品五福影院1421 | 日韩精品久久久久久| 国产成人精品免费久久久久| 中文字幕久久波多野结衣av| 亚洲AV无码久久寂寞少妇| 久久久久波多野结衣高潮| 亚洲国产日韩综合久久精品|