• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks

            #

            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted @ 2016-02-28 21:01 bigrabbit 閱讀(331) | 評論 (0)編輯 收藏

            主要類:
            CCNode

               CCDirector
               CCScene
               CCLayer


            定時更新:

               [[[CCDirector sharedDirector] scheduler] scheduleUpdateForTarget:self priority:0 paused:NO];

               //[[[CCDirector sharedDirector] scheduler] unscheduleUpdateForTarget:self];

            接收輸入:
               v0.99

                  CCStandardTouchDelegate

                  CCTargetedTouchDelegate

               v2.10

                  CCTouchOneByOneDelegate

                  CCTouchAllAtOnceDelegate

               [[[CCDirector sharedDirector] touchDispatcher] addTargetedDelegate:self priority:0 swallowsTouches:YES];

               //[[[CCDirector sharedDirector] touchDispatcher] removeDelegate:self];


            坐標系統:
               position是設置相對于父親節點的坐標
               self.anchorPoint和self.position重合


            多層:
               [cclayer.addchild cclayer];
               一層疊一層

            posted @ 2014-05-15 21:14 bigrabbit 閱讀(273) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-10-24 22:47 bigrabbit 閱讀(524) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-08-02 15:36 bigrabbit 閱讀(977) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-31 22:36 bigrabbit 閱讀(659) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-26 12:14 bigrabbit 閱讀(192) | 評論 (0)編輯 收藏

                 摘要: UVA 10801 Lift Hopping  閱讀全文
            posted @ 2012-07-22 23:43 bigrabbit 閱讀(1156) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-13 09:02 bigrabbit 閱讀(1122) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-04-30 16:30 bigrabbit 閱讀(435) | 評論 (1)編輯 收藏

            今天做了次CF,兩個小時比賽時間。。用一小時水了兩題之后,又用一個小時的龜速想了一個不知道什么玩意的玩意,比賽沒A掉,比賽結束A掉了。為什么要想那么久呢。。。。。。水題也要想那么久。。。。。小細節處理不好。。。。。
            不過話說CF的題目不錯,不像廣大中文OJ的無腦題
            http://codeforces.com/problemset/problem/180/E 
            不貼代碼了。


            posted @ 2012-04-22 17:23 bigrabbit 閱讀(321) | 評論 (0)編輯 收藏

            僅列出標題
            共3頁: 1 2 3 
            久久精品亚洲乱码伦伦中文 | 久久久久久久久无码精品亚洲日韩| 精品人妻伦一二三区久久| 久久se精品一区二区影院 | 精品久久久久久国产潘金莲| 久久午夜综合久久| 国产精品美女久久久久久2018 | 久久精品无码av| 久久受www免费人成_看片中文| 久久精品国产亚洲AV忘忧草18| 久久精品成人国产午夜| 久久久久久久久66精品片| 久久99国产精品尤物| 日韩欧美亚洲综合久久影院Ds| 99久久国产热无码精品免费| 久久精品成人免费国产片小草| 天堂久久天堂AV色综合| 亚洲国产精品狼友中文久久久| 国产精品免费久久久久电影网| 国产精品无码久久综合| 无码乱码观看精品久久| 久久精品国内一区二区三区| 久久精品青青草原伊人| 久久国产成人亚洲精品影院| 久久99国产精品久久久| 国产69精品久久久久9999APGF | 午夜久久久久久禁播电影| 久久久久久久国产免费看| 94久久国产乱子伦精品免费 | 国产精品久久久99| 色偷偷久久一区二区三区| 亚洲AV无码久久精品色欲| 久久久久久噜噜精品免费直播| 青草影院天堂男人久久| 国产精品日韩深夜福利久久| 97精品国产91久久久久久| 国产精品va久久久久久久| 亚洲欧美日韩精品久久| 久久综合中文字幕| 精品久久人人妻人人做精品 | 久久夜色精品国产亚洲av|