• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks

            2016年2月28日 #

            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted @ 2016-02-28 21:01 bigrabbit 閱讀(327) | 評論 (0)編輯 收藏

            2014年5月15日 #

            主要類:
            CCNode

               CCDirector
               CCScene
               CCLayer


            定時更新:

               [[[CCDirector sharedDirector] scheduler] scheduleUpdateForTarget:self priority:0 paused:NO];

               //[[[CCDirector sharedDirector] scheduler] unscheduleUpdateForTarget:self];

            接收輸入:
               v0.99

                  CCStandardTouchDelegate

                  CCTargetedTouchDelegate

               v2.10

                  CCTouchOneByOneDelegate

                  CCTouchAllAtOnceDelegate

               [[[CCDirector sharedDirector] touchDispatcher] addTargetedDelegate:self priority:0 swallowsTouches:YES];

               //[[[CCDirector sharedDirector] touchDispatcher] removeDelegate:self];


            坐標系統:
               position是設置相對于父親節點的坐標
               self.anchorPoint和self.position重合


            多層:
               [cclayer.addchild cclayer];
               一層疊一層

            posted @ 2014-05-15 21:14 bigrabbit 閱讀(270) | 評論 (0)編輯 收藏

            2012年10月24日 #

                 摘要:   閱讀全文
            posted @ 2012-10-24 22:47 bigrabbit 閱讀(521) | 評論 (0)編輯 收藏

            2012年8月2日 #

                 摘要:   閱讀全文
            posted @ 2012-08-02 15:36 bigrabbit 閱讀(972) | 評論 (0)編輯 收藏

            2012年7月31日 #

                 摘要:   閱讀全文
            posted @ 2012-07-31 22:36 bigrabbit 閱讀(656) | 評論 (0)編輯 收藏

            2012年7月26日 #

                 摘要:   閱讀全文
            posted @ 2012-07-26 12:14 bigrabbit 閱讀(190) | 評論 (0)編輯 收藏

            2012年7月22日 #

                 摘要: UVA 10801 Lift Hopping  閱讀全文
            posted @ 2012-07-22 23:43 bigrabbit 閱讀(1151) | 評論 (0)編輯 收藏

            2012年7月13日 #

                 摘要:   閱讀全文
            posted @ 2012-07-13 09:02 bigrabbit 閱讀(1117) | 評論 (0)編輯 收藏

            2012年4月30日 #

                 摘要:   閱讀全文
            posted @ 2012-04-30 16:30 bigrabbit 閱讀(432) | 評論 (1)編輯 收藏

            2012年4月22日 #

            今天做了次CF,兩個小時比賽時間。。用一小時水了兩題之后,又用一個小時的龜速想了一個不知道什么玩意的玩意,比賽沒A掉,比賽結束A掉了。為什么要想那么久呢。。。。。。水題也要想那么久。。。。。小細節處理不好。。。。。
            不過話說CF的題目不錯,不像廣大中文OJ的無腦題
            http://codeforces.com/problemset/problem/180/E 
            不貼代碼了。


            posted @ 2012-04-22 17:23 bigrabbit 閱讀(317) | 評論 (0)編輯 收藏

            僅列出標題  下一頁
            久久福利资源国产精品999| 久久精品国产亚洲7777| 久久91精品国产91| 久久亚洲美女精品国产精品| 久久天天躁狠狠躁夜夜avapp| 久久99热国产这有精品| 色婷婷噜噜久久国产精品12p| 久久综合狠狠综合久久综合88| 国产精品一区二区久久精品| 欧美日韩成人精品久久久免费看| 亚洲AV无码1区2区久久| 久久精品国产只有精品66| 久久精品无码专区免费东京热| 久久se精品一区精品二区国产| 亚洲级αV无码毛片久久精品| 国产福利电影一区二区三区,免费久久久久久久精 | 青青久久精品国产免费看| 久久精品人人做人人爽电影蜜月| 久久天天躁狠狠躁夜夜av浪潮| 99国产精品久久| 亚洲国产精品无码久久一线| 久久久久久无码国产精品中文字幕| 亚洲AV无码久久精品成人| 精品国产乱码久久久久软件| 九九热久久免费视频| 青青青伊人色综合久久| 国内精品久久久久影院日本| 日本五月天婷久久网站| 综合久久一区二区三区 | 欧美精品一区二区精品久久| 97精品伊人久久久大香线蕉| 伊人久久五月天| 久久久精品国产免大香伊| 亚洲午夜久久久| 99久久这里只精品国产免费| 久久精品极品盛宴观看| 久久精品桃花综合| 97精品伊人久久久大香线蕉| 97久久国产综合精品女不卡| 久久久一本精品99久久精品66 | 精品久久人人爽天天玩人人妻 |