• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks

            2016年2月28日 #

            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted @ 2016-02-28 21:01 bigrabbit 閱讀(338) | 評論 (0)編輯 收藏

            2014年5月15日 #

            主要類:
            CCNode

               CCDirector
               CCScene
               CCLayer


            定時更新:

               [[[CCDirector sharedDirector] scheduler] scheduleUpdateForTarget:self priority:0 paused:NO];

               //[[[CCDirector sharedDirector] scheduler] unscheduleUpdateForTarget:self];

            接收輸入:
               v0.99

                  CCStandardTouchDelegate

                  CCTargetedTouchDelegate

               v2.10

                  CCTouchOneByOneDelegate

                  CCTouchAllAtOnceDelegate

               [[[CCDirector sharedDirector] touchDispatcher] addTargetedDelegate:self priority:0 swallowsTouches:YES];

               //[[[CCDirector sharedDirector] touchDispatcher] removeDelegate:self];


            坐標系統:
               position是設置相對于父親節點的坐標
               self.anchorPoint和self.position重合


            多層:
               [cclayer.addchild cclayer];
               一層疊一層

            posted @ 2014-05-15 21:14 bigrabbit 閱讀(282) | 評論 (0)編輯 收藏

            2012年10月24日 #

                 摘要:   閱讀全文
            posted @ 2012-10-24 22:47 bigrabbit 閱讀(535) | 評論 (0)編輯 收藏

            2012年8月2日 #

                 摘要:   閱讀全文
            posted @ 2012-08-02 15:36 bigrabbit 閱讀(986) | 評論 (0)編輯 收藏

            2012年7月31日 #

                 摘要:   閱讀全文
            posted @ 2012-07-31 22:36 bigrabbit 閱讀(668) | 評論 (0)編輯 收藏

            2012年7月26日 #

                 摘要:   閱讀全文
            posted @ 2012-07-26 12:14 bigrabbit 閱讀(201) | 評論 (0)編輯 收藏

            2012年7月22日 #

                 摘要: UVA 10801 Lift Hopping  閱讀全文
            posted @ 2012-07-22 23:43 bigrabbit 閱讀(1163) | 評論 (0)編輯 收藏

            2012年7月13日 #

                 摘要:   閱讀全文
            posted @ 2012-07-13 09:02 bigrabbit 閱讀(1134) | 評論 (0)編輯 收藏

            2012年4月30日 #

                 摘要:   閱讀全文
            posted @ 2012-04-30 16:30 bigrabbit 閱讀(444) | 評論 (1)編輯 收藏

            2012年4月22日 #

            今天做了次CF,兩個小時比賽時間。。用一小時水了兩題之后,又用一個小時的龜速想了一個不知道什么玩意的玩意,比賽沒A掉,比賽結束A掉了。為什么要想那么久呢。。。。。。水題也要想那么久。。。。。小細節處理不好。。。。。
            不過話說CF的題目不錯,不像廣大中文OJ的無腦題
            http://codeforces.com/problemset/problem/180/E 
            不貼代碼了。


            posted @ 2012-04-22 17:23 bigrabbit 閱讀(329) | 評論 (0)編輯 收藏

            僅列出標題  下一頁
            亚洲国产成人久久综合野外 | 日韩精品久久久久久| 国产成人精品白浆久久69| 久久久91精品国产一区二区三区 | 国内精品伊人久久久影院| 亚洲AV日韩精品久久久久| 青青青国产精品国产精品久久久久| 国产精品免费久久| 久久综合亚洲欧美成人| 久久精品免费大片国产大片| 久久综合给合久久狠狠狠97色| 久久九九久精品国产免费直播| 无码人妻久久久一区二区三区| 久久影视综合亚洲| 91久久九九无码成人网站| 精品永久久福利一区二区| 中文字幕无码久久久| 青青国产成人久久91网| 久久精品国产亚洲AV无码麻豆| 日本五月天婷久久网站| 一级女性全黄久久生活片免费 | 九九精品99久久久香蕉| 99久久精品免费看国产一区二区三区 | 久久精品国产亚洲麻豆| 久久久久亚洲AV无码网站| 蜜桃麻豆WWW久久囤产精品| 久久99精品久久久久久野外| 国产精品久久久久久久| 久久精品国产亚洲AV无码娇色 | 99久久精品免费看国产| 日日噜噜夜夜狠狠久久丁香五月 | 久久美女人爽女人爽| 国内精品九九久久久精品| 久久久久亚洲Av无码专| 99国产精品久久| 一本大道加勒比久久综合| 嫩草影院久久国产精品| 国产精品99久久久久久猫咪| 久久精品二区| 久久久久亚洲国产| 久久精品麻豆日日躁夜夜躁|