• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            一道幾何題,解決方法很容易想到,不過要細心。

            隨著輸入的順序,將矩形一個個放入集合,如果新的矩形與集合中的舊矩形相交,就將舊矩形分解,刪除舊矩形,放入新矩形和分解的矩形。

            設矩形R1、R2,寬和高分別為(W1, H1)和(W2, H2),兩矩形中心坐標分別為(X1, Y1)以及(X2, Y2)。判斷兩矩形是否相交(也就是是否有面積相重合),就看兩矩形中心坐標的豎直和水平距離是否小于兩矩形高的和的一半以及兩矩形寬的和的一半。即:

            ( |X1 - X2| < (W1 + W2) / 2 ) && ( |Y1 - Y2| < (H1 + H2) / 2 )

            如果條件滿足,R1和R2即相交。

            那相交會有幾種情況呢?我想到了16種:

            image

            根據不同的情況,可以將原來的矩形分解為0~4個小矩形,這樣就可以解出來了。

            (做幾何題可真費草稿紙啊,看來以后得學學matlab了,低碳、環保?。?/p>

            另外,USACO還有一種解法,就是將矩形的四條邊進行離散化處理,將線段排序,然后再依次掃描,大體思路是這樣的,具體細節沒怎么看。

            posted on 2011-02-01 20:55 quxiao 閱讀(208) 評論(0)  編輯 收藏 引用
            久久综合久久美利坚合众国| 精品久久国产一区二区三区香蕉| 国产精品一区二区久久精品涩爱| 一本久久精品一区二区| www.久久热| 欧美熟妇另类久久久久久不卡| 久久99国产精品成人欧美| 波多野结衣久久一区二区| 久久精品九九亚洲精品| 久久人人爽人人爽人人AV东京热| 久久er国产精品免费观看2| 国产精品久久久久久| 欧美国产精品久久高清| 久久久久这里只有精品| 久久精品国产精品亚洲毛片| 人妻少妇精品久久| 久久人人超碰精品CAOPOREN| 无遮挡粉嫩小泬久久久久久久 | 91亚洲国产成人久久精品网址| 久久婷婷国产综合精品| 性做久久久久久久久| 国产精品伊人久久伊人电影| 色欲综合久久躁天天躁| 久久国产三级无码一区二区| 久久精品国产99国产精品| 99精品国产在热久久| 久久精品一本到99热免费| 久久妇女高潮几次MBA| 久久A级毛片免费观看| 亚洲女久久久噜噜噜熟女| 久久婷婷五月综合色奶水99啪| 久久精品无码一区二区三区免费| 国产成人精品久久亚洲| 久久国产高清字幕中文| 99久久精品免费看国产| 国产精品99久久久久久董美香| 久久精品国产精品亚洲精品| 国产91久久精品一区二区| 久久这里只有精品久久| 久久人人爽人人爽人人av东京热| 久久久免费观成人影院|