• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            數(shù)據(jù)加載中……

            URAL 1018 A Binary Apple Tree

            A Binary Apple Tree


            Time Limit: 1.0 second
            Memory Limit: 16 MB
            Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by natural numbers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
            2   5
            \ /
            3 4
            \ /
            1
            As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

            Input

            First line of input contains two numbers: N and Q (1 ≤ QN; 1 < N ≤ 100). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N−1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

            Output

            Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

            Sample

            input output
            5 2
            1 3 1
            1 4 10
            2 3 20
            3 5 20
                                             21

            簡析:
                  這是一個簡單的樹形動態(tài)規(guī)劃問題,大概可以拿來當(dāng)這類題目的入門訓(xùn)練題.雖然這是URAL上的第一個樹形DP,但是我奇怪的是它的通過率并不很高.
                  對于原題目的圖形,用數(shù)組value[a][b]表示a,b點(diǎn)間蘋果的個數(shù),用nd[p].L,nd[p].R分別表示節(jié)點(diǎn)p的左右兒子.通過build_tree(1)獲得數(shù)組nd[],從而獲得整棵樹的信息.
            接著,用ans[p][i]表示以節(jié)點(diǎn)p為祖宗的子樹,保留的枝條不超過i條時所能保留的最多的蘋果,狀態(tài)轉(zhuǎn)移有一下幾種情況.
            在除去多余枝條的后的圖中,
            1.  p只與一個兒子相連:
                ans[p][i]=max(ans[left_son][i-1]+value[left_son][p],ans[right_son][i-1]+value[right_son][p]);
            2.  p與兩個兒子相連:
                for (int j=0;j<=i-2;++j)
                  ans[p][i]=max(ans[p][i],ans[left_son][j]+ans[right_son][i-j-2]+d); 
                這里,d=value[left_son][p]+value[right_son][p];

            算法在o(N*Q*Q)級別
             1 #include<iostream>
             2 using namespace std;
             3 const int MAXN=102;
             4 int n,q,value[MAXN][MAXN],ans[MAXN][MAXN];
             5 struct node
             6 {
             7   int l,r;
             8 }nd[MAXN];
             9 
            10 void build_tree(int p)
            11 {
            12   int flg=0;
            13   for (int i=1;i<=n;++i)
            14     if (value[p][i] && (!nd[i].l))
            15       {
            16     flg=1;
            17     if (nd[p].l==0) nd[p].l=i;
            18     else
            19       {nd[p].r=i; break;}
            20       }
            21   if (!flg) return;
            22   if (nd[p].l) build_tree(nd[p].l);
            23   if (nd[p].r) build_tree(nd[p].r);
            24 }
            25 
            26 void calc(int p)
            27 {
            28   if (!nd[p].l) return;
            29   int l=nd[p].l,r=nd[p].r;
            30   calc(l);
            31   calc(r);
            32   ans[p][1]=max(value[l][p],value[r][p]);
            33 
            34   int d=value[l][p]+value[r][p];
            35   for (int i=2;i<=q;++i)
            36   {  
            37     ans[p][i]=max(ans[l][i-1]+value[l][p],ans[r][i-1]+value[r][p]);
            38     for (int j=0;j<=i-2;++j)
            39       ans[p][i]=max(ans[p][i],ans[l][j]+ans[r][i-j-2]+d);
            40   }
            41 }
            42 
            43 
            44 int main()
            45 {
            46   //freopen("data.in","r",stdin);
            47   //freopen("data.out","w",stdout);
            48   cin >> n >> q;
            49   memset(value,0,sizeof(value));
            50   for (int i=1;i<n;++i)
            51     {
            52       int a,b,c;
            53       cin >> a >> b >> c;
            54       value[a][b]=c;
            55       value[b][a]=c;
            56     }
            57   memset(nd,0,sizeof(nd));
            58   build_tree(1);
            59   calc(1);
            60   cout << ans[1][q] << endl;
            61   return 0;
            62 }
            63 



            posted on 2009-07-19 23:02 Chen Jiecao 閱讀(483) 評論(0)  編輯 收藏 引用 所屬分類: URAL

            久久久久久九九99精品| 久久精品成人一区二区三区| 久久久免费观成人影院 | 理论片午午伦夜理片久久| 久久天天躁狠狠躁夜夜不卡| 国产色综合久久无码有码| 奇米影视7777久久精品| 97久久精品人人澡人人爽| 武侠古典久久婷婷狼人伊人| 久久久精品人妻一区二区三区蜜桃 | 青青青国产成人久久111网站| 亚洲国产成人精品久久久国产成人一区二区三区综 | 久久精品国产亚洲av高清漫画| 91精品国产综合久久精品| 亚洲国产精品无码久久青草| 国产精品18久久久久久vr| 三级韩国一区久久二区综合| 国产精品久久久久久影院 | 2021国产精品久久精品| 国产精品gz久久久| 99久久精品国产麻豆| 久久经典免费视频| 久久亚洲国产成人精品无码区| 成人久久久观看免费毛片| 国内精品久久久久久久久电影网| 久久久久国产精品嫩草影院| 久久精品国产免费一区| 久久婷婷五月综合色高清| 久久人人爽人人人人爽AV| 久久天天躁狠狠躁夜夜av浪潮| 久久综合综合久久97色| 国产99久久精品一区二区| 久久亚洲AV成人无码国产 | 99久久国产综合精品五月天喷水| 久久精品国产99久久无毒不卡| 久久精品国产亚洲AV影院 | 成人精品一区二区久久| 日本精品久久久久中文字幕| 国产精品一区二区久久国产| AV狠狠色丁香婷婷综合久久| 91精品国产高清91久久久久久|