• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            數據加載中……

            URAL 1018 A Binary Apple Tree

            A Binary Apple Tree


            Time Limit: 1.0 second
            Memory Limit: 16 MB
            Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by natural numbers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
            2   5
            \ /
            3 4
            \ /
            1
            As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

            Input

            First line of input contains two numbers: N and Q (1 ≤ QN; 1 < N ≤ 100). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N−1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

            Output

            Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

            Sample

            input output
            5 2
            1 3 1
            1 4 10
            2 3 20
            3 5 20
                                             21

            簡析:
                  這是一個簡單的樹形動態規劃問題,大概可以拿來當這類題目的入門訓練題.雖然這是URAL上的第一個樹形DP,但是我奇怪的是它的通過率并不很高.
                  對于原題目的圖形,用數組value[a][b]表示a,b點間蘋果的個數,用nd[p].L,nd[p].R分別表示節點p的左右兒子.通過build_tree(1)獲得數組nd[],從而獲得整棵樹的信息.
            接著,用ans[p][i]表示以節點p為祖宗的子樹,保留的枝條不超過i條時所能保留的最多的蘋果,狀態轉移有一下幾種情況.
            在除去多余枝條的后的圖中,
            1.  p只與一個兒子相連:
                ans[p][i]=max(ans[left_son][i-1]+value[left_son][p],ans[right_son][i-1]+value[right_son][p]);
            2.  p與兩個兒子相連:
                for (int j=0;j<=i-2;++j)
                  ans[p][i]=max(ans[p][i],ans[left_son][j]+ans[right_son][i-j-2]+d); 
                這里,d=value[left_son][p]+value[right_son][p];

            算法在o(N*Q*Q)級別
             1 #include<iostream>
             2 using namespace std;
             3 const int MAXN=102;
             4 int n,q,value[MAXN][MAXN],ans[MAXN][MAXN];
             5 struct node
             6 {
             7   int l,r;
             8 }nd[MAXN];
             9 
            10 void build_tree(int p)
            11 {
            12   int flg=0;
            13   for (int i=1;i<=n;++i)
            14     if (value[p][i] && (!nd[i].l))
            15       {
            16     flg=1;
            17     if (nd[p].l==0) nd[p].l=i;
            18     else
            19       {nd[p].r=i; break;}
            20       }
            21   if (!flg) return;
            22   if (nd[p].l) build_tree(nd[p].l);
            23   if (nd[p].r) build_tree(nd[p].r);
            24 }
            25 
            26 void calc(int p)
            27 {
            28   if (!nd[p].l) return;
            29   int l=nd[p].l,r=nd[p].r;
            30   calc(l);
            31   calc(r);
            32   ans[p][1]=max(value[l][p],value[r][p]);
            33 
            34   int d=value[l][p]+value[r][p];
            35   for (int i=2;i<=q;++i)
            36   {  
            37     ans[p][i]=max(ans[l][i-1]+value[l][p],ans[r][i-1]+value[r][p]);
            38     for (int j=0;j<=i-2;++j)
            39       ans[p][i]=max(ans[p][i],ans[l][j]+ans[r][i-j-2]+d);
            40   }
            41 }
            42 
            43 
            44 int main()
            45 {
            46   //freopen("data.in","r",stdin);
            47   //freopen("data.out","w",stdout);
            48   cin >> n >> q;
            49   memset(value,0,sizeof(value));
            50   for (int i=1;i<n;++i)
            51     {
            52       int a,b,c;
            53       cin >> a >> b >> c;
            54       value[a][b]=c;
            55       value[b][a]=c;
            56     }
            57   memset(nd,0,sizeof(nd));
            58   build_tree(1);
            59   calc(1);
            60   cout << ans[1][q] << endl;
            61   return 0;
            62 }
            63 



            posted on 2009-07-19 23:02 Chen Jiecao 閱讀(489) 評論(0)  編輯 收藏 引用 所屬分類: URAL

            亚洲性久久久影院| 97香蕉久久夜色精品国产| 大伊人青草狠狠久久| MM131亚洲国产美女久久| 色综合久久综合网观看| 中文精品99久久国产 | 亚洲Av无码国产情品久久| 久久九九兔免费精品6| 97久久精品国产精品青草| 欧美激情精品久久久久久久九九九| 久久无码AV中文出轨人妻| 久久香蕉国产线看观看99| 免费久久人人爽人人爽av| 国产精品一区二区久久精品| 久久93精品国产91久久综合| 久久这里只有精品18| 久久丝袜精品中文字幕| 久久精品中文无码资源站| 中文字幕无码久久人妻| 青青草国产精品久久| 无码人妻久久久一区二区三区| 久久国产成人| 久久免费高清视频| 无码人妻久久一区二区三区免费| 精品久久久久久无码中文野结衣 | 久久香蕉国产线看观看乱码| 亚洲精品乱码久久久久久蜜桃不卡| 久久免费视频6| 国产成人99久久亚洲综合精品| 久久亚洲欧美国产精品| 午夜人妻久久久久久久久| 77777亚洲午夜久久多人| 亚洲国产综合久久天堂| 无码人妻少妇久久中文字幕| 精品人妻伦九区久久AAA片69| 青青草原综合久久| 91精品婷婷国产综合久久| 亚洲国产成人久久精品影视| 久久精品九九亚洲精品天堂| 一级做a爰片久久毛片16| 精品熟女少妇aⅴ免费久久|