• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            數據加載中……

            URAL 1018 A Binary Apple Tree

            A Binary Apple Tree


            Time Limit: 1.0 second
            Memory Limit: 16 MB
            Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by natural numbers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
            2   5
            \ /
            3 4
            \ /
            1
            As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

            Input

            First line of input contains two numbers: N and Q (1 ≤ QN; 1 < N ≤ 100). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N−1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

            Output

            Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

            Sample

            input output
            5 2
            1 3 1
            1 4 10
            2 3 20
            3 5 20
                                             21

            簡析:
                  這是一個簡單的樹形動態規劃問題,大概可以拿來當這類題目的入門訓練題.雖然這是URAL上的第一個樹形DP,但是我奇怪的是它的通過率并不很高.
                  對于原題目的圖形,用數組value[a][b]表示a,b點間蘋果的個數,用nd[p].L,nd[p].R分別表示節點p的左右兒子.通過build_tree(1)獲得數組nd[],從而獲得整棵樹的信息.
            接著,用ans[p][i]表示以節點p為祖宗的子樹,保留的枝條不超過i條時所能保留的最多的蘋果,狀態轉移有一下幾種情況.
            在除去多余枝條的后的圖中,
            1.  p只與一個兒子相連:
                ans[p][i]=max(ans[left_son][i-1]+value[left_son][p],ans[right_son][i-1]+value[right_son][p]);
            2.  p與兩個兒子相連:
                for (int j=0;j<=i-2;++j)
                  ans[p][i]=max(ans[p][i],ans[left_son][j]+ans[right_son][i-j-2]+d); 
                這里,d=value[left_son][p]+value[right_son][p];

            算法在o(N*Q*Q)級別
             1 #include<iostream>
             2 using namespace std;
             3 const int MAXN=102;
             4 int n,q,value[MAXN][MAXN],ans[MAXN][MAXN];
             5 struct node
             6 {
             7   int l,r;
             8 }nd[MAXN];
             9 
            10 void build_tree(int p)
            11 {
            12   int flg=0;
            13   for (int i=1;i<=n;++i)
            14     if (value[p][i] && (!nd[i].l))
            15       {
            16     flg=1;
            17     if (nd[p].l==0) nd[p].l=i;
            18     else
            19       {nd[p].r=i; break;}
            20       }
            21   if (!flg) return;
            22   if (nd[p].l) build_tree(nd[p].l);
            23   if (nd[p].r) build_tree(nd[p].r);
            24 }
            25 
            26 void calc(int p)
            27 {
            28   if (!nd[p].l) return;
            29   int l=nd[p].l,r=nd[p].r;
            30   calc(l);
            31   calc(r);
            32   ans[p][1]=max(value[l][p],value[r][p]);
            33 
            34   int d=value[l][p]+value[r][p];
            35   for (int i=2;i<=q;++i)
            36   {  
            37     ans[p][i]=max(ans[l][i-1]+value[l][p],ans[r][i-1]+value[r][p]);
            38     for (int j=0;j<=i-2;++j)
            39       ans[p][i]=max(ans[p][i],ans[l][j]+ans[r][i-j-2]+d);
            40   }
            41 }
            42 
            43 
            44 int main()
            45 {
            46   //freopen("data.in","r",stdin);
            47   //freopen("data.out","w",stdout);
            48   cin >> n >> q;
            49   memset(value,0,sizeof(value));
            50   for (int i=1;i<n;++i)
            51     {
            52       int a,b,c;
            53       cin >> a >> b >> c;
            54       value[a][b]=c;
            55       value[b][a]=c;
            56     }
            57   memset(nd,0,sizeof(nd));
            58   build_tree(1);
            59   calc(1);
            60   cout << ans[1][q] << endl;
            61   return 0;
            62 }
            63 



            posted on 2009-07-19 23:02 Chen Jiecao 閱讀(487) 評論(0)  編輯 收藏 引用 所屬分類: URAL

            一本色道久久88综合日韩精品| 国产精品亚洲综合久久| 久久99亚洲网美利坚合众国| 日本道色综合久久影院| 久久精品国产精品亚洲下载| 婷婷久久久亚洲欧洲日产国码AV| 国产成年无码久久久久毛片| 久久综合成人网| 2021精品国产综合久久| 久久精品国产男包| 国产精品久久久久天天影视| 婷婷久久综合九色综合绿巨人| 色综合久久中文字幕无码| 久久99中文字幕久久| 少妇熟女久久综合网色欲| 一本久久久久久久| AV无码久久久久不卡蜜桃| 99热精品久久只有精品| 中文字幕久久波多野结衣av| 国产成人久久精品二区三区| 精品无码久久久久久尤物| 亚洲国产精品综合久久一线| 91超碰碰碰碰久久久久久综合| 亚洲AV无码一区东京热久久| 三级韩国一区久久二区综合| 久久精品成人| 国产综合久久久久| 久久婷婷五月综合97色| 久久99九九国产免费看小说| 久久av高潮av无码av喷吹| 国内精品久久久久影院免费| 久久精品夜夜夜夜夜久久| 久久AV高潮AV无码AV| 97香蕉久久夜色精品国产| 久久国产精品无| 久久亚洲AV永久无码精品| 精品国产热久久久福利| 精品国产综合区久久久久久 | 国产AⅤ精品一区二区三区久久| 中文字幕久久久久人妻| 麻豆成人久久精品二区三区免费 |