• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.2.2 第一道網(wǎng)絡(luò)流····

            Posted on 2010-03-26 13:04 rikisand 閱讀(423) 評論(0)  編輯 收藏 引用 所屬分類: C/C++USACO

            Drainage Ditches
            Hal Burch

            Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

            Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Note however, that there can be more than one ditch between two intersections.

            Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

            PROGRAM NAME: ditch
            INPUT FORMAT

            Line 1:
            Two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream.

            Line 2..N+1:
            Each of N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

            SAMPLE INPUT (file ditch.in)
            5 4
            1 2 40
            1 4 20
            2 4 20
            2 3 30
            3 4 10
            
            OUTPUT FORMAT

            One line with a single integer, the maximum rate at which water may emptied from the pond.

            SAMPLE OUTPUT (file ditch.out)
            50
            最基本的網(wǎng)絡(luò)流
               1:  #include<iostream>
               2:  #include<fstream>
               3:  #include<string>
               4:  #include<vector>
               5:  #include<map>
               6:  #include<algorithm>
               7:  #include<sstream>
               8:  #include <cstring>
               9:  #include <queue>
              10:  using namespace std;
              11:  const int MAXN = 220;
              12:  const int infi = 0x7FFFFFFF;
              13:   int capacity[MAXN][MAXN], prenode[MAXN], flow[MAXN];
              14:   queue<int> mq; 
              15:   
              16:  int start, end, N;
              17:  void init(){
              18:      freopen("ditch.in","r",stdin);
              19:      //freopen("e:\\usaco\\ditch.in","r",stdin);
              20:      start = 1;  
              21:      scanf("%d %d",&N,&end); int c, s, t;
              22:      memset(capacity,0,sizeof(capacity));
              23:      for(int i=0;i<N;i++)
              24:      {
              25:          scanf("%d %d %d",&c,&s,&t);
              26:          capacity[c][s] += t; //兩個節(jié)點間不只有一條路
              27:      } 
              28:  }
              29:  int bfs(){//尋找增廣路徑
              30:      while(!mq.empty()) mq.pop(); 
              31:      mq.push(start);  //源節(jié)點入隊
              32:      //memset(flow,0,sizeof(flow));
              33:      memset(prenode,-1,sizeof(prenode)); //重置前向節(jié)點
              34:      prenode[start] = 0; flow[start]=infi; //源節(jié)點流量無限大
              35:      while(!mq.empty()){
              36:          int cur = mq.front(); 
              37:          mq.pop();
              38:          if(cur == end) break; //到達匯點結(jié)束路徑 
              39:          for(int i=1;i<=end;i++){ 
              40:              if(prenode[i]==-1 && capacity[cur][i]) //訪問當(dāng)前節(jié)點所有未訪問的相鄰節(jié)點,更新flow
              41:              {
              42:                  prenode[i] = cur;
              43:                  flow[i] = (flow[cur]<capacity[cur][i]?flow[cur]:capacity[cur][i]);
              44:                  mq.push(i);
              45:              }
              46:          }
              47:      }
              48:      if(prenode[end]==-1)  //如果未找到增廣路徑返回-1
              49:          return -1;
              50:      return flow[end];
              51:  }
              52:  int Edmonds_Karp(){
              53:      int total = 0, pathcapacity;//pathcapacity 路徑增加量
              54:      while((pathcapacity = bfs()) != -1){//可以找到增廣路徑時候進行循環(huán)
              55:          int cur = end;    //從匯點開始增加逆向節(jié)點
              56:          while( cur != start ){
              57:              int t = prenode[cur] ;
              58:              capacity[t][cur] -= pathcapacity;
              59:              capacity[cur][t] += pathcapacity;
              60:              cur = t;
              61:          }
              62:          total += pathcapacity;//max_flow
              63:      }
              64:      return total;
              65:  }
              66:  void output(){
              67:      freopen("ditch.out","w",stdout);
              68:      //freopen("c:\\usaco\\ditch.out","w",stdout);
              69:      cout<<Edmonds_Karp()<<endl;
              70:  } 
              71:     int main()
              72:  {
              73:      init();  
              74:      output();
              75:      return 0;
              76:  }

            標(biāo)程:使用貪心法,尋找一條增廣路徑的時候不斷尋找cap最大的,未被訪問的節(jié)點mloc;然后更新跟mloc相鄰的節(jié)點flow以

            及prenode信息.最后當(dāng)運行到end時候,更新路徑節(jié)點capacity,同時增加max_flow.重復(fù)上述過程直到找不到增廣路徑

               1:  #include <stdio.h>
               2:  #include <string.h>
               3:   
               4:  #define MAXI 200
               5:   
               6:  /* total drain amount between intersection points */
               7:  int drain[MAXI][MAXI];
               8:  int nint; /* number of intersection points */
               9:   
              10:  int cap[MAXI]; /* amount of flow that can get to each node */
              11:  int vis[MAXI]; /* has this node been visited by Dijkstra's yet? */
              12:  int src[MAXI]; /* the previous node on the path from the source to here */
              13:   
              14:  int augment(void)
              15:   { /* run a Dijkstra's varient to find maximum augmenting path */
              16:    int lv;
              17:    int mloc, max;
              18:    int t;
              19:   
              20:    memset(cap, 0, sizeof(cap));
              21:    memset(vis, 0, sizeof(vis));
              22:   
              23:    cap[0] = 2000000000;
              24:    while (1)
              25:     {
              26:      /* find maximum unvisited node */
              27:      max = 0;
              28:      mloc = -1;
              29:      for (lv = 0; lv < nint; lv++)
              30:        if (!vis[lv] && cap[lv] > max)
              31:         {
              32:          max = cap[lv];
              33:      mloc = lv;
              34:         }
              35:      if (mloc == -1) return 0;
              36:      if (mloc == nint-1) break; /* max is the goal, we're done */
              37:   
              38:      vis[mloc] = -1; /* mark as visited */
              39:   
              40:      /* update neighbors, if going through this node improves the
              41:         capacity */
              42:      for (lv = 0; lv < nint; lv++)
              43:        if (drain[mloc][lv] > cap[lv] && max > cap[lv])
              44:         {
              45:          cap[lv] = drain[mloc][lv];
              46:      if (cap[lv] > max) cap[lv] = max;
              47:      src[lv] = mloc;
              48:         }
              49:     }
              50:    max = cap[nint-1];
              51:   
              52:    /* augment path, starting at end */
              53:    for (lv = nint-1; lv > 0; lv = src[lv])
              54:     {
              55:      t = src[lv];
              56:      drain[t][lv] -= max;
              57:      drain[lv][t] += max;
              58:     }
              59:    return max;
              60:   }
              61:   
              62:  int main(int argc, char **argv)
              63:   {
              64:    FILE *fout, *fin;
              65:    int lv;
              66:    int num;
              67:    int p1, p2, c;
              68:   
              69:    if ((fin = fopen("ditch.in", "r")) == NULL)
              70:     {
              71:      perror ("fopen fin");
              72:      exit(1);
              73:     }
              74:    if ((fout = fopen("ditch.out", "w")) == NULL)
              75:     {
              76:      perror ("fopen fout");
              77:      exit(1);
              78:     }
              79:   
              80:    fscanf (fin, "%d %d", &num, &nint);
              81:    while (num--)
              82:     {
              83:      fscanf (fin, "%d %d %d", &p1, &p2, &c);
              84:      p1--;
              85:      p2--;
              86:      drain[p1][p2] += c; /* note += handles two ditches between same points */
              87:     }
              88:   
              89:    /* max flow algorithm: augment while you can */
              90:    c = 0;
              91:    while ((p1 = augment()))
              92:      c += p1;
              93:    fprintf (fout, "%d\n", c);
              94:    return 0;
              95:   }

             

             

             

             

             

             

             

             

            久久99国产精品成人欧美| 亚洲精品乱码久久久久久蜜桃不卡| 国产精品久久网| 伊人久久大香线蕉亚洲| 久久久久无码国产精品不卡| 国产一区二区三区久久| 亚洲AV无一区二区三区久久| 漂亮人妻被中出中文字幕久久| 久久久久久久亚洲精品| 久久国产福利免费| 亚洲欧美国产精品专区久久| 久久精品一区二区影院| 欧美成a人片免费看久久| 国产精品久久久天天影视香蕉 | 国产亚洲婷婷香蕉久久精品| MM131亚洲国产美女久久| 国产精品福利一区二区久久| 久久精品国产清高在天天线| 久久久久国产一区二区三区| 久久国产福利免费| 国产成人精品综合久久久久| 亚洲中文久久精品无码| 国内精品伊人久久久久| 日本免费久久久久久久网站| 亚洲欧美国产精品专区久久 | 久久国产高潮流白浆免费观看| 亚洲伊人久久精品影院| 久久国产精品99久久久久久老狼| 99久久精品无码一区二区毛片| 热RE99久久精品国产66热| 久久久久久久久久久精品尤物| 久久精品毛片免费观看| 国产91久久综合| 久久九九兔免费精品6| 亚洲午夜久久影院| 久久夜色精品国产亚洲| 久久久九九有精品国产| 中文字幕精品久久久久人妻| 久久国产精品99久久久久久老狼 | 9191精品国产免费久久| 久久久久青草线蕉综合超碰|