• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            TC-srm249-Tableseat-DP-狀態排列

            Posted on 2009-11-12 21:45 rikisand 閱讀(287) 評論(0)  編輯 收藏 引用 所屬分類: TopcoderAlgorithm

            Your restaurant has numTables tables to seat customers. The tables are all arranged in a line. If a large party of customers comes in, a group of adjacent tables will be used. Which group of tables is entirely up to the customer. Since you cannot predict this, assume all possible choices occur with equal probability. What you can predict is the size of each group of customers that arrives. Element i of probs gives the probability, in percent, that an entering party will need i+1 tables. Assuming nobody leaves, return the expected number of tables you will use before a party must be turned away. This only occurs if there is no place to seat them.

            Method signature:
            double getExpected(int numTables, vector <int> probs)

            numTables will be between 1 and 12 inclusive.
            probs will contain between 1 and 12 elements inclusive.
            Each element of probs will be between 0 and 100 inclusive.
            The elements of probs will sum to 100.

             

            misof 數字表達教程里的習題~ 題目大意 求使用桌子的期望。由于到來group的個數不定,每個group需要的桌子不定,使確定期望變得困難。但考慮對于numTables來說,使用桌子的狀態僅僅有 2^numTables種,因此考慮在這些狀態改變的過程中來計算期望,也就是計算在每個狀態下面的期望桌子數目。在每個狀態到達時,依次考慮來了一個group需要k個位子,如果r種安排可以滿足k個位子,那么當前狀態的期望值要加上 來k個位子的概率 X (r種安排分別的期望和 / r) 其中求r中安排期望和則需要 遞歸調用函數。顯然利用memo可以減少重復計算于是有下面的解法:

            vector<double> p;
            double dp[1<<13];   
            int tb;
            double solve(int cur){
                if(dp[cur]>-1.0)return dp[cur];    //memo available
                double ret=0;double sum;int kind;
                for(int i=0;i<p.size();i++){
                    sum=0,kind=0;
                    int mask=(1<<(i+1))-1;    //new group need i+1 adjacent tables
                    for(int j=0;j+i+1<=tb;j++){
                        if((cur&(mask<<j))==0){    //current pattern could meet the need
                            sum+=solve(cur+(mask<<j))+i+1;    //total method ++
                            kind++;
                        }
                    }
                    if(kind!=0)sum/=kind; //caculate the average need
                    ret+=sum*p[i];
                }
                dp[cur]=ret;
                return ret;
            }

                    double getExpected(int numTables, vector <int> probs)
                    {
                            tb=numTables;
                            REP(i,1<<13)dp[i]=-1.0;
                            p.resize(probs.size());
                            for(int i=0;i<probs.size();i++)p[i]=probs[i]*0.01;
                            return solve(0);//the beginning pattern
                    }

            看比賽中有另一種解法,即根據題目,在到達每次fail to serve a group 的時候 根據此時的桌子數量,和到達這種狀態的概率 來計算:

            dp[1<<13][15];memset(dp,0,sizeof(dp));// :D lucily I can do this for 0

            double fails=0.0;bool flag ;

            for(int i=1;i<=numTables+1;i++)  //循環最多numTables+1 次

            {flag=true;

            for(int j=0;j<p.size();j++){

                 int mask=(1<<(j+1))-1;//注意移位運算符的優先級低,注意加括號

                 for(int k=0;k<=(1<<numTables-1);k++){

                      if(dp[k][i-1]<=0.0)continue;

                      flag=false;

                      int cnt=0;

                      for(int m=0;m+j+1<=numTables;m++) if((mask<<m)&k==0)cnt++;

                      if(cnt)for(int m=0;m+j+1<=numTables;m++)if((mask<<m)&k==0)dp[mask<<m|k][i]+=dp[k][i-1]*p[j]/cnt;

                      if(!cnt){

                             int b=k,bn=0;while(b){if(b&1)bn++;b>>=1;}

                             fail+=dp[k][i-1]*bn; 

                     }

                }

            }

            if(flag)return fail;//all dp[][k]==0.0

            }

            return fail;

             

            優先級很容易錯:

            http://www.cppreference.com/wiki/operator_precedence~。~

            典型的幾個

            ++ -- <post-incre-decre>

            ~ <bitwise complement> !<not>&<addresss> *<dereference>&<address>

            *  / %

            + -

            >>  <<

            < <= > >=

            == !=

            &

            ^ xor

            |

            &&

            ||

            ?=

            = += –= <<= >>=

            ,

             

            從上到下依次降低~~~~~~~~~~~~~~~~~~··

             

             

             

             

             

             

             

            99久久综合国产精品二区| AAA级久久久精品无码区| 久久只这里是精品66| 中文字幕无码久久久| 国内精品久久久久影院优| 91久久福利国产成人精品| 热久久国产欧美一区二区精品| 怡红院日本一道日本久久| 久久久久久一区国产精品| 久久久久人妻精品一区二区三区| 久久99精品国产| 一级女性全黄久久生活片免费 | 国产V综合V亚洲欧美久久| 久久香蕉国产线看观看乱码| 久久精品国产一区二区三区| 99国内精品久久久久久久| 色偷偷888欧美精品久久久| 热久久视久久精品18| 久久精品国产99国产精偷| 亚洲国产精品无码久久一线| 亚洲一本综合久久| 99久久免费国产特黄| 亚洲伊人久久综合影院| 国产精品欧美久久久久天天影视| 国产精品国色综合久久| 久久无码高潮喷水| 久久丫忘忧草产品| 久久伊人五月丁香狠狠色| 久久久久亚洲爆乳少妇无 | 国产成人久久精品二区三区| 日韩av无码久久精品免费| 亚洲国产美女精品久久久久∴| 久久夜色精品国产亚洲| 99久久这里只精品国产免费| 国产精品伊人久久伊人电影| 久久中文娱乐网| 国产福利电影一区二区三区久久老子无码午夜伦不 | 欧洲性大片xxxxx久久久| 欧美久久综合九色综合| 国产精品免费看久久久香蕉 | 91久久香蕉国产熟女线看|