• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            cc

              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              38 隨筆 :: 14 文章 :: 21 評(píng)論 :: 0 Trackbacks

            class CVector 
            {
            public:
             union
             {
              float vec[3];
              struct  { float x,y,z;};
             };
            }

            class CCommonTools 
            {
            public:
             CCommonTools();
             virtual ~CCommonTools();
            public:
             static bool ValidPoint(CVector &LinePoint, CVector &LineV,
                                              CVector &TrianglePoint1, CVector &TrianglePoint2, CVector &TrianglePoint3,CVector &result);
             static float Area(float a, float b, float c);
             static float Distance(CVector &p1, CVector &p2);
            };

            ///////////////////////////////

            CCommonTools::CCommonTools()
            {

            }

            CCommonTools::~CCommonTools()
            {

            }
            //計(jì)算p1到p2的距離的平方
            float CCommonTools::Distance(CVector &p1, CVector &p2)
            {
             float dist;
             dist = ((p2.x-p1.x)*(p2.x-p1.x)
              + (p2.y-p1.y)*(p2.y-p1.y)
              + (p2.z-p1.z)*(p2.z-p1.z));
             return (float)sqrt(dist);
            }
            //利用海倫公式求變成為a,b,c的三角形的面積
            float CCommonTools::Area(float a, float b, float c)
            {
             float s = (a+b+c)/2;
             return (float)sqrt(s*(s-a)*(s-b)*(s-c));
            }
            bool CCommonTools::ValidPoint(CVector &LinePoint1, CVector &LinePoint2, CVector &TrianglePoint1, CVector

            &TrianglePoint2,CVector &TrianglePoint3,CVector &result)
            {
              //三角形所在平面的法向量
              CVector TriangleV;
              //三角形的邊方向向量
              CVector VP12, VP13;
              //直線與平面的交點(diǎn)
              CVector CrossPoint;
              //平面方程常數(shù)項(xiàng)
              float TriD;
              CVector LineV = LinePoint2 - LinePoint1;
              /*-------計(jì)算平面的法向量及常數(shù)項(xiàng)-------*/
              //point1->point2
              VP12.x = TrianglePoint2.x - TrianglePoint1.x;
              VP12.y = TrianglePoint2.y - TrianglePoint1.y;
              VP12.z = TrianglePoint2.z - TrianglePoint1.z;
              //point1->point3
              VP13.x = TrianglePoint3.x - TrianglePoint1.x;
              VP13.y = TrianglePoint3.y - TrianglePoint1.y;
              VP13.z = TrianglePoint3.z - TrianglePoint1.z;
              //VP12xVP13
              TriangleV.x = VP12.y*VP13.z - VP12.z*VP13.y;
              TriangleV.y = -(VP12.x*VP13.z - VP12.z*VP13.x);
              TriangleV.z= VP12.x*VP13.y - VP12.y*VP13.x;
              //計(jì)算常數(shù)項(xiàng)
              TriD = -(TriangleV.x*TrianglePoint1.x
                + TriangleV.y*TrianglePoint1.y
                + TriangleV.z*TrianglePoint1.z);
              /*-------求解直線與平面的交點(diǎn)坐標(biāo)---------*/
              /* 思路:
               *     首先將直線方程轉(zhuǎn)換為參數(shù)方程形式,然后代入平面方程,求得參數(shù)t,
               * 將t代入直線的參數(shù)方程即可求出交點(diǎn)坐標(biāo)
              */
              float tempU, tempD;  //臨時(shí)變量
              tempU = TriangleV.x*LinePoint1.x + TriangleV.y*LinePoint1.y
                + TriangleV.z*LinePoint1.z + TriD;
              tempD = TriangleV.x*LineV.x + TriangleV.y*LineV.y + TriangleV.z*LineV.z;
              //直線與平面平行或在平面上
              if(tempD == 0.0)
              {
              // printf("The line is parallel with the plane.\n");
               return false;
              }
              //計(jì)算參數(shù)t
              float t = -tempU/tempD;
              //計(jì)算交點(diǎn)坐標(biāo)
              CrossPoint.x = LineV.x*t + LinePoint1.x;
              CrossPoint.y = LineV.y*t + LinePoint1.y;
              CrossPoint.z = LineV.z*t + LinePoint1.z;
              /*----------判斷交點(diǎn)是否在三角形內(nèi)部---------*/

              //計(jì)算三角形三條邊的長(zhǎng)度
              float d12 = Distance(TrianglePoint1, TrianglePoint2);
              float d13 = Distance(TrianglePoint1, TrianglePoint3);
              float d23 = Distance(TrianglePoint2, TrianglePoint3);
              //計(jì)算交點(diǎn)到三個(gè)頂點(diǎn)的長(zhǎng)度
              float c1 = Distance(CrossPoint, TrianglePoint1);
              float c2 = Distance(CrossPoint, TrianglePoint2);
              float c3 = Distance(CrossPoint, TrianglePoint3);
              //求三角形及子三角形的面積
              float areaD = Area(d12, d13, d23);  //三角形面積
              float area1 = Area(c1, c2, d12);    //子三角形1
              float area2 = Area(c1, c3, d13);    //子三角形2
              float area3 = Area(c2, c3, d23);    //子三角形3
              //根據(jù)面積判斷點(diǎn)是否在三角形內(nèi)部
              if(fabs(area1+area2+area3-areaD) > 0.001)
              {
              return false;
              }


              result = CrossPoint;
              return true;
            }

            這幾天同學(xué)問(wèn)我如何判斷空間中的線段和三角面片是否相交,我想這個(gè)也許對(duì)其他人也有點(diǎn)用處。

            上面的代碼是判斷兩點(diǎn)構(gòu)成的直線和三點(diǎn)構(gòu)成的面片是否相交,要判斷線段的話,需要再判斷交點(diǎn)是否在線段的兩個(gè)端點(diǎn)之間:  交點(diǎn)和兩個(gè)端點(diǎn)可以形成兩個(gè)向量,判斷這兩個(gè)向量的方向即可。

            posted on 2008-07-17 09:26 醒目西西 閱讀(2453) 評(píng)論(0)  編輯 收藏 引用
            国产精品九九久久精品女同亚洲欧美日韩综合区 | 久久免费国产精品一区二区| 蜜臀av性久久久久蜜臀aⅴ麻豆| 久久精品无码一区二区无码| 精品综合久久久久久88小说| 久久WWW免费人成一看片| 国产精品久久毛片完整版| 国产激情久久久久影院| 久久精品国产AV一区二区三区| 色成年激情久久综合| 亚洲午夜久久久久久久久电影网| 国产日产久久高清欧美一区| 亚洲日韩欧美一区久久久久我| 国产一久久香蕉国产线看观看| 无码人妻久久一区二区三区蜜桃| 久久99久久99小草精品免视看| 亚洲日本久久久午夜精品| 国产精品伦理久久久久久| 波多野结衣中文字幕久久| 久久伊人精品一区二区三区| 久久久免费观成人影院 | 日本精品久久久中文字幕| 国内精品伊人久久久久777| 激情综合色综合久久综合| 99精品国产在热久久无毒不卡| 波多野结衣久久| 综合久久一区二区三区| 久久一区二区三区免费| 久久青青草原精品国产不卡| 久久久久久免费一区二区三区| 久久久久国产精品熟女影院 | 狠狠色丁香婷综合久久| 久久亚洲精品国产精品| 久久久久精品国产亚洲AV无码| 一个色综合久久| 久久精品国产99久久久古代| 久久天天躁狠狠躁夜夜2020| 精品久久久久久无码国产| 精品久久久久国产免费| 久久久国产一区二区三区| 国产精品欧美亚洲韩国日本久久|