一、簡單介紹
Hough變換是圖像處理中從圖像中識別幾何形狀的基本方法之一。Hough變換的基本原理在于利用點與線的對偶性,將原始圖像空間的給定的曲線通過曲線表達形式變?yōu)閰?shù)空間的一個點。這樣就把原始圖像中給定曲線的檢測問題轉(zhuǎn)化為尋找參數(shù)空間中的峰值問題。也即把檢測整體特性轉(zhuǎn)化為檢測局部特性。比如直線、橢圓、圓、弧線等。
二、Hough變換的基本思想
設(shè)已知一黑白圖像上畫了一條直線,要求出這條直線所在的位置。我們知道,直線的方程可以用y=k*x+b 來表示,其中k和b是參數(shù),分別是斜率和截距。過某一點(x0,y0)的所有直線的參數(shù)都會滿足方程y0=kx0+b。即點(x0,y0)確定了一族直線。方程y0=kx0+b在參數(shù)k--b平面上是一條直線,(你也可以是方程b=-x0*k+y0對應(yīng)的直線)。這樣,圖像x--y平面上的一個前景像素點就對應(yīng)到參數(shù)平面上的一條直線。我們舉個例子說明解決前面那個問題的原理。設(shè)圖像上的直線是y=x, 我們先取上面的三個點:A(0,0), B(1,1), C(22)。可以求出,過A點的直線的參數(shù)要滿足方程b=0, 過B點的直線的參數(shù)要滿足方程1=k+b, 過C點的直線的參數(shù)要滿足方程2=2k+b, 這三個方程就對應(yīng)著參數(shù)平面上的三條直線,而這三條直線會相交于一點(k=1,b=0)。 同理,原圖像上直線y=x上的其它點(如(3,3),(4,4)等) 對應(yīng)參數(shù)平面上的直線也會通過點(k=1,b=0)。這個性質(zhì)就為我們解決問題提供了方法,就是把圖像平面上的點對應(yīng)到參數(shù)平面上的線,最后通過統(tǒng)計特性來解決問題。假如圖像平面上有兩條直線,那么最終在參數(shù)平面上就會看到兩個峰值點,依此類推。
簡而言之,Hough變換思想為:在原始圖像坐標系下的一個點對應(yīng)了參數(shù)坐標系中的一條直線,同樣參數(shù)坐標系的一條直線對應(yīng)了原始坐標系下的一個點,然后,原始坐標系下呈現(xiàn)直線的所有點,它們的斜率和截距是相同的,所以它們在參數(shù)坐標系下對應(yīng)于同一個點。這樣在將原始坐標系下的各個點投影到參數(shù)坐標系下之后,看參數(shù)坐標系下有沒有聚集點,這樣的聚集點就對應(yīng)了原始坐標系下的直線。
在實際應(yīng)用中,y=k*x+b形式的直線方程沒有辦法表示x=c形式的直線(這時候,直線的斜率為無窮大)。所以實際應(yīng)用中,是采用參數(shù)方程p=x*cos(theta)+y*sin(theta)。這樣,圖像平面上的一個點就對應(yīng)到參數(shù)p---theta平面上的一條曲線上,其它的還是一樣。
三、Hough變換推廣
1、已知半徑的圓
其實Hough變換可以檢測任意的已知表達形式的曲線,關(guān)鍵是看其參數(shù)空間的選擇,參數(shù)空間的選擇可以根據(jù)它的表達形式而定。比如圓的表達形式為 ,所以當檢測某一半徑的圓的時候,可以選擇與原圖像空間同樣的空間作為參數(shù)空間。那么圓圖像空間中的一個圓對應(yīng)了參數(shù)空間中的一個點,參數(shù)空間中的一個點對應(yīng)了圖像空間中的一個圓,圓圖像空間中在同一個圓上的點,它們的參數(shù)相同即a,b相同,那么它們在參數(shù)空間中的對應(yīng)的圓就會過同一個點(a,b),所以,將原圖像空間中的所有點變換到參數(shù)空間后,根據(jù)參數(shù)空間中點的聚集程度就可以判斷出圖像空間中有沒有近似于圓的圖形。如果有的話,這個參數(shù)就是圓的參數(shù)。
2、未知半徑的圓
對于圓的半徑未知的情況下,可以看作是有三個參數(shù)的圓的檢測,中心和半徑。這個時候原理仍然相同,只是參數(shù)空間的維數(shù)升高,計算量增大。圖像空間中的任意一個點都對應(yīng)了參數(shù)空間中的一簇圓曲線。 ,其實是一個圓錐型。參數(shù)空間中的任意一個點對應(yīng)了圖像空間中的一個圓。
3、橢圓
橢圓有5個自由參數(shù),所以它的參數(shù)空間是5維的,因此他的計算量非常大,所以提出了許多的改進算法。
四、總結(jié)
圖像空間中的在同一個圓,直線,橢圓上的點,每一個點都對應(yīng)了參數(shù)空間中的一個圖形,在圖像空間中這些點都滿足它們的方程這一個條件,所以這些點,每個投影后得到的圖像都會經(jīng)過這個參數(shù)空間中的點。也就是在參數(shù)空間中它們會相交于一點。所以,當參數(shù)空間中的這個相交點的越大的話,那么說明元圖像空間中滿足這個參數(shù)的圖形越飽滿。越象我們要檢測的東西。
Hough變換能夠查找任意的曲線,只要你給定它的方程。Hough變換在檢驗已知形狀的目標方面具有受曲線間斷影響小和不受圖形旋轉(zhuǎn)的影響的優(yōu)點,即使目標有稍許缺損或污染也能被正確識別。