1、 管道概述及相關API應用
1.1 管道相關的關鍵概念
管道是Linux支持的最初Unix IPC形式之一,具有以下特點:
- 管道是半雙工的,數據只能向一個方向流動;需要雙方通信時,需要建立起兩個管道;
- 只能用于父子進程或者兄弟進程之間(具有親緣關系的進程);
- 單獨構成一種獨立的文件系統:管道對于管道兩端的進程而言,就是一個文件,但它不是普通的文件,它不屬于某種文件系統,而是自立門戶,單獨構成一種文件系統,并且只存在與內存中。
- 數據的讀出和寫入:一個進程向管道中寫的內容被管道另一端的進程讀出。寫入的內容每次都添加在管道緩沖區的末尾,并且每次都是從緩沖區的頭部讀出數據。
1.2管道的創建:
#include <unistd.h>
int pipe(int fd[2])
該函數創建的管道的兩端處于一個進程中間,在實際應用中沒有太大意義,因此,一個進程在由pipe()創建管道后,一般再fork一個子進程,然后通過管道實現父子進程間的通信(因此也不難推出,只要兩個進程中存在親緣關系,這里的親緣關系指的是具有共同的祖先,都可以采用管道方式來進行通信)。
1.3管道的讀寫規則:
管道兩端可分別用描述字fd[0]以及fd[1]來描述,需要注意的是,管道的兩端是固定了任務的。即一端只能用于讀,由描述字fd[0]表示,稱其為管道讀端;另一端則只能用于寫,由描述字fd[1]來表示,稱其為管道寫端。如果試圖從管道寫端讀取數據,或者向管道讀端寫入數據都將導致錯誤發生。一般文件的I/O函數都可以用于管道,如close、read、write等等。
從管道中讀取數據:
- 如果管道的寫端不存在,則認為已經讀到了數據的末尾,讀函數返回的讀出字節數為0;
- 當管道的寫端存在時,如果請求的字節數目大于PIPE_BUF,則返回管道中現有的數據字節數,如果請求的字節數目不大于PIPE_BUF,則返回管道中現有數據字節數(此時,管道中數據量小于請求的數據量);或者返回請求的字節數(此時,管道中數據量不小于請求的數據量)。注:(PIPE_BUF在include/linux/limits.h中定義,不同的內核版本可能會有所不同。Posix.1要求PIPE_BUF至少為512字節,red hat 7.2中為4096)。
關于管道的讀規則驗證:
/**************
* readtest.c *
**************/
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[100];
char w_buf[4];
char* p_wbuf;
int r_num;
int cmd;
memset(r_buf,0,sizeof(r_buf));
memset(w_buf,0,sizeof(r_buf));
p_wbuf=w_buf;
if(pipe(pipe_fd)<0)
{
printf("pipe create error\n");
return -1;
}
if((pid=fork())==0)
{
printf("\n");
close(pipe_fd[1]);
sleep(3);//確保父進程關閉寫端
r_num=read(pipe_fd[0],r_buf,100);
printf( "read num is %d the data read from the pipe is %d\n",r_num,atoi(r_buf));
close(pipe_fd[0]);
exit();
}
else if(pid>0)
{
close(pipe_fd[0]);//read
strcpy(w_buf,"111");
if(write(pipe_fd[1],w_buf,4)!=-1)
printf("parent write over\n");
close(pipe_fd[1]);//write
printf("parent close fd[1] over\n");
sleep(10);
}
}
/**************************************************
* 程序輸出結果:
* parent write over
* parent close fd[1] over
* read num is 4 the data read from the pipe is 111
* 附加結論:
* 管道寫端關閉后,寫入的數據將一直存在,直到讀出為止.
****************************************************/
向管道中寫入數據:
- 向管道中寫入數據時,linux將不保證寫入的原子性,管道緩沖區一有空閑區域,寫進程就會試圖向管道寫入數據。如果讀進程不讀走管道緩沖區中的數據,那么寫操作將一直阻塞。
注:只有在管道的讀端存在時,向管道中寫入數據才有意義。否則,向管道中寫入數據的進程將收到內核傳來的SIFPIPE信號,應用程序可以處理該信號,也可以忽略(默認動作則是應用程序終止)。
對管道的寫規則的驗證1:寫端對讀端存在的依賴性
#include <unistd.h>
#include <sys/types.h>
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[4];
char* w_buf;
int writenum;
int cmd;
memset(r_buf,0,sizeof(r_buf));
if(pipe(pipe_fd)<0)
{
printf("pipe create error\n");
return -1;
}
if((pid=fork())==0)
{
close(pipe_fd[0]);
close(pipe_fd[1]);
sleep(10);
exit();
}
else if(pid>0)
{
sleep(1); //等待子進程完成關閉讀端的操作
close(pipe_fd[0]);//write
w_buf="111";
if((writenum=write(pipe_fd[1],w_buf,4))==-1)
printf("write to pipe error\n");
else
printf("the bytes write to pipe is %d \n", writenum);
close(pipe_fd[1]);
}
}
則輸出結果為: Broken pipe,原因就是該管道以及它的所有fork()產物的讀端都已經被關閉。如果在父進程中保留讀端,即在寫完pipe后,再關閉父進程的讀端,也會正常寫入pipe,讀者可自己驗證一下該結論。因此,在向管道寫入數據時,至少應該存在某一個進程,其中管道讀端沒有被關閉,否則就會出現上述錯誤(管道斷裂,進程收到了SIGPIPE信號,默認動作是進程終止)
對管道的寫規則的驗證2:linux不保證寫管道的原子性驗證
結論:
寫入數目小于4096時寫入是非原子的!
如果把父進程中的兩次寫入字節數都改為5000,則很容易得出下面結論:
寫入管道的數據量大于4096字節時,緩沖區的空閑空間將被寫入數據(補齊),直到寫完所有數據為止,如果沒有進程讀數據,則一直阻塞。
1.4管道應用實例:
實例一:用于shell
管道可用于輸入輸出重定向,它將一個命令的輸出直接定向到另一個命令的輸入。比如,當在某個shell程序(Bourne shell或C shell等)鍵入who│wc -l后,相應shell程序將創建who以及wc兩個進程和這兩個進程間的管道。考慮下面的命令行:
$kill -l
$kill -l | grep SIGRTMIN
實例二:用于具有親緣關系的進程間通信
下面例子給出了管道的具體應用,父進程通過管道發送一些命令給子進程,子進程解析命令,并根據命令作相應處理。
#include <unistd.h>
#include <sys/types.h>
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[4];
char* w_buf;
int writenum;
int cmd;
memset(r_buf,0,sizeof(r_buf));
if(pipe(pipe_fd)<0)
{
printf("pipe create error\n");
return -1;
}
if((pid=fork())==0)
{
close(pipe_fd[0]);
close(pipe_fd[1]);
sleep(10);
exit();
}
else if(pid>0)
{
sleep(1); //等待子進程完成關閉讀端的操作
close(pipe_fd[0]);//write
w_buf="111";
if((writenum=write(pipe_fd[1],w_buf,4))==-1)
printf("write to pipe error\n");
else
printf("the bytes write to pipe is %d \n", writenum);
close(pipe_fd[1]);
}
}
輸出結果:
the bytes write to pipe 1000
the bytes write to pipe 1000 //注意,此行輸出說明了寫入的非原子性
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 120 //注意,此行輸出說明了寫入的非原子性
the bytes write to pipe 0
the bytes write to pipe 0
......
1.5 管道的局限性
管道的主要局限性正體現在它的特點上:
- 只支持單向數據流;
- 只能用于具有親緣關系的進程之間;
- 沒有名字;
- 管道的緩沖區是有限的(管道制存在于內存中,在管道創建時,為緩沖區分配一個頁面大小);
- 管道所傳送的是無格式字節流,這就要求管道的讀出方和寫入方必須事先約定好數據的格式,比如多少字節算作一個消息(或命令、或記錄)等等