linux 下有動態庫和靜態庫,動態庫以.so為擴展名,靜態庫以.a為擴展名。二者都使用廣泛。本文主要講動態庫方面知識。
基本上每一個linux 程序都至少會有一個動態庫,查看某個程序使用了那些動態庫,使用ldd命令查看
- # ldd /bin/ls
- linux-vdso.so.1 => (0x00007fff597ff000)
- libselinux.so.1 => /lib64/libselinux.so.1 (0x00000036c2e00000)
- librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)
- libcap.so.2 => /lib64/libcap.so.2 (0x00000036c4a00000)
- libacl.so.1 => /lib64/libacl.so.1 (0x00000036d0600000)
- libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
- libdl.so.2 => /lib64/libdl.so.2 (0x00000036c1600000)
- /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
- libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)
- libattr.so.1 => /lib64/libattr.so.1 (0x00000036cf600000)
這么多so,是的。使用ldd顯示的so,并不是所有so都是需要使用的,下面舉個例子
main.cpp
- #include <stdio.h>
- #include <iostream>
- #include <string>
- using namespace std;
- int main ()
- {
- cout << "test" << endl;
- return 0;
- }
使用缺省參數編譯結果
- # g++ -o demo main.cpp
- # ldd demo
- linux-vdso.so.1 => (0x00007fffcd1ff000)
- libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f4d02f69000)
- libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
- libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
- libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
- /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
如果我鏈接一些so,但是程序并不用到這些so,又是什么情況呢,下面我加入鏈接壓縮庫,數學庫,線程庫
- # g++ -o demo -lz -lm -lrt main.cpp
- # ldd demo
- linux-vdso.so.1 => (0x00007fff0f7fc000)
- libz.so.1 => /lib64/libz.so.1 (0x00000036c2600000)
- librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)
- libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff6ab70d000)
- libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
- libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
- libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
- libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)
- /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
看看,雖然沒有用到,但是一樣有鏈接進來,那看看程序啟動時候有沒有去加載它們呢
- # strace ./demo
- execve("./demo", ["./demo"], [/* 30 vars */]) = 0
- ... = 0
- open("/lib64/libz.so.1", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/lib64/librt.so.1", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/usr/lib64/libstdc++.so.6", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/lib64/libm.so.6", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/lib64/libgcc_s.so.1", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/lib64/libc.so.6", O_RDONLY) = 3
- ...
- close(3) = 0
- open("/lib64/libpthread.so.0", O_RDONLY) = 3
- ...
- close(3) = 0
- ...
看,有加載,所以必定會影響進程啟動速度,所以我們最后不要把無用的so編譯進來,這里會有什么影響呢?
大家知不知道linux從程序(program或對象)變成進程(process或進程),要經過哪些步驟呢,這里如果詳細的說,估計要另開一篇文章。簡單的說分三步:
1、fork進程,在內核創建進程相關內核項,加載進程可執行文件;
2、查找依賴的so,一一加載映射虛擬地址
3、初始化程序變量。
可以看到,第二步中dll依賴越多,進程啟動越慢,并且發布程序的時候,這些鏈接但沒有使用的so,同樣要一起跟著發布,否則進程啟動時候,會失敗,找不到對應的so。所以我們不能像上面那樣,把一些毫無意義的so鏈接進來,浪費資源。但是開發人員寫makefile 一般有沒有那么細心,圖省事方便,那么有什么好的辦法呢。繼續看下去,下面會給你解決方法。
先使用 ldd -u demo 查看不需要鏈接的so,看下面,一面了然,無用的so全部暴露出來了吧
- # ldd -u demo
- Unused direct dependencies:
- /lib64/libz.so.1
- /lib64/librt.so.1
- /lib64/libm.so.6
- /lib64/libgcc_s.so.1
使用
-Wl,--as-needed 編譯選項
- # g++ -Wl,--as-needed -o demo -lz -lm -lrt main.cpp
- # ldd demo
- linux-vdso.so.1 => (0x00007fffebfff000)
- libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff665c05000)
- libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
- libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
- /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
- libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
- # ldd -u demo
- Unused direct dependencies:
呵呵,辦法很簡單省事吧,本文主要講so依賴的一些問題,下一篇將介紹so的路徑方面一些不為人知的小秘密