• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 181  文章 - 15  trackbacks - 0
            <2008年11月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            30123456

            常用鏈接

            留言簿(1)

            隨筆分類

            隨筆檔案

            My Tech blog

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            在這一部分之前,書中介紹了基本類型的顯式初始化以及簡單的異常處理.
            基本類型的顯式初始化是比較簡單的.就是說你在定義一個整型變量的時候,有兩種不同的情況:
            int i1;         // undefined value
            int i2 = int(); // initialized with zero

            如果按照前一種,會作"值未定義;如果按照后一種,則自動被初始化為0.這樣也就確保了你的類在初始化的時候有一個確定的初始值.
            至于異常的處理等問題,書中會在后面有比較詳細的描述.這里可以看到比較有意思的一點,就是指定函數拋出的異常類型,這于Java很像:
            void f() throw(bad_alloc);
            下面轉入正題:命名空間.
            有了命名空間,它將會取代函數和類作用于全局,并作為它所統領的那些類和函數的唯一標識存在.這樣可以避免命名沖突情況的出現.正如書中所說:
            Unlike classes, namespaces are open for definitions and extensions in different modules. Thus
            you can use namespaces to define modules, libraries, or components even by using multiple
            files. A namespace defines logical modules instead of physical modules (in UML and other
            modeling notations, a module is also called a package).

            可以像這樣定義一個命名空間:
            namespace MyNameSpace
            {
                
            class MyClass
                {
                    
            private:
                    
            char * _classInfo;
                    
            public:
                    
            char* getClassInfo()
                    {
                        
            return _classInfo;
                    }
                    MyClass(
            const char* info)
                    {
                        _classInfo
            =new char[strlen(info)];
                        strcpy(_classInfo,info);
                    }
                    
            ~MyClass()
                    {
                        
            if(_classInfo)
                        {
                            std::cout
            <<"free classinfo";
                            delete[] _classInfo;
                        }
                    }
                };
                
            void printMyClassInfo(MyClass &instance)
                {
                    std::cout
            <<instance.getClassInfo();
                }
            }
            從上面可以看出,這個命名空間里面包括了一個類和一個函數.類中包含了char*類型的成員變量.函數printMyClassInfo 以一個MyClass類型的引用作為參數.為什么要用引用呢?熟悉c++的人應當很清楚,我是通過實驗才剛剛知道原因.這個原因我將會在后面說明.
            好現在來看一下調用過程,通常的調用過程是這樣的:
            int main()
            {
                MyNameSpace::MyClass instance(
            "MyClass!\n");
                MyNameSpace::printMyClassInfo(instance);
            }
            這沒有任何問題,但有意思的是,還可以這樣調用:
            int main()
            {
                MyNameSpace::MyClass instance(
            "MyClass!\n");
                printMyClassInfo(instance);
            }
            看來c++中在使用一個命名空間的類或者函數的時候,這個命名空間就被"自動"引入了.當尋找函數printMyClassInfo的時候會在當前的上下文中進行尋找的同時,還會到以前用到過的命名空間中去尋找.
            當然,通常情況下我們喜歡這樣做:
            using namespace MyNameSpace; 
            int main()
            {
                MyClass instance(
            "MyClass!\n");
                printMyClassInfo(instance);

            }
            但是并不是在任何情況下都鼓勵using namespace這種做法的.在書中將得比較清楚:
            Note that you should never use a using directive when the context is not clear (such as in header
            files, modules, or libraries). The directive might change the scope of identifiers of a namespace,
            so you might get different behavior than the one expected because you included or used your
            code in another module. In fact, using directives in header files is really bad design.

            上面這段話強調了當上下文并不明確的情況下(比如在一個頭文件,組件或者庫里面),不要使用using這種寫法,這個指令會改變命名空間標識符的作用域,這樣你就有可能引發和你預期不相同的行為,因為你會在另外一個組件中引用你的代碼或使用它.事實上,將using標識符寫在頭文件里面是一種相當不好的設計.
            在這里,我看了一下c++程序設計語言這本書,發現命名空間除了像上面這樣聲明以外,還可以像類一樣這樣來寫:
            在命名空間中這樣定義
            void printMyClassInfo(MyClass &);
            然后在外面寫函數的主體
            void MyNameSpace::printMyClassInfo(MyClass &instance)
            {
                std::cout
            <<instance.getClassInfo();
            }
            好了,寫了這么多,再來看看剛才留下來的那個問題.
            其實很簡單,一個函數如果傳遞的是值,那么就會在內存中產生一個一模一樣的"復本",而那個字符指針也會被復制一次.當傳送的值超過它的作用域的時候 ,就會被釋放掉,而被復制的"本體"在程序運行結束之后,又會被"釋放一次".這樣在運行的時候,它會提示你這樣的錯誤:
            *** glibc detected *** double free or corruption (fasttop): 0x0804a008 ***

            在我們的MyClassl類的析構中,我們有一個輸出,所以這里就輸出了兩次:
            free classinfofree classinfo




            posted on 2007-06-14 22:06 littlegai 閱讀(291) 評論(0)  編輯 收藏 引用 所屬分類: 我的讀書筆記
            无码人妻少妇久久中文字幕蜜桃| 国产激情久久久久影院小草| 亚洲精品乱码久久久久久中文字幕 | 色综合久久88色综合天天 | 久久91这里精品国产2020| 欧美日韩精品久久久免费观看| 香蕉久久夜色精品升级完成| 国产亚州精品女人久久久久久 | 无码任你躁久久久久久| 久久ZYZ资源站无码中文动漫| 精品水蜜桃久久久久久久| 漂亮人妻被黑人久久精品| 久久人妻少妇嫩草AV蜜桃| 久久久女人与动物群交毛片| 久久久久亚洲AV无码专区网站| 久久婷婷五月综合国产尤物app| 人妻无码久久精品| 久久成人精品| 亚洲午夜久久影院| 伊人久久大香线蕉av不卡| 一本综合久久国产二区| 精品久久久久久国产三级| 久久不射电影网| 久久精品国产亚洲AV麻豆网站 | 久久97久久97精品免视看| 99久久精品国产麻豆| 午夜不卡久久精品无码免费| 狠狠色婷婷久久一区二区| 中文字幕无码久久人妻| 色综合久久88色综合天天 | 色综合久久天天综线观看| 国产高潮国产高潮久久久91| 国内精品伊人久久久久影院对白| 国产午夜久久影院| 久久久久四虎国产精品| 久久被窝电影亚洲爽爽爽| 精品久久久久久久中文字幕| 日韩亚洲欧美久久久www综合网| 久久久精品午夜免费不卡| 99久久综合狠狠综合久久| 久久久久亚洲精品天堂久久久久久|