• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 9,  comments - 19,  trackbacks - 0

            0x0

            前些天組里老司機(jī)@梁希在jvm的項(xiàng)目榨干機(jī)器性能之余,為了檢查下gcc編譯器和Intel Xoen CPU的正確性,寫了一組測試代碼測試了下mfence指令的效果

            `
            mfence Opcode : 0F AE /6

            Performs a serializing operation on all load-from-memory and store-to-memory instructions that were issued prior the MFENCE instruction. This serializing operation guarantees that every load and store instruction that precedes in program order the MFENCE instruction is globally visible before any load or store instruction that follows the MFENCE instruction is globally visible. The MFENCE instruction is ordered with respect to all load and store instructions, other MFENCE instructions, any SFENCE and LFENCE instructions, and any serializing instructions (such as the CPUID instruction).
            Weakly ordered memory types can be used to achieve higher processor performance through such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
            The degree to which a consumer of data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data. The MFENCE instruction provides a performance-efficient way of ensuring load and store ordering between routines that produce weakly-ordered results and routines that consume that data.
            It should be noted that processors are free to speculatively fetch and cache data from system memory regions that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). The PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not tied to instruction execution, the MFENCE instruction is not ordered with respect to PREFETCHh instructions or any other speculative fetching mechanism (that is, data could be speculatively loaded into the cache just before, during, or after the execution of an MFENCE instruction).
            `

            簡單來說就是一個(gè)可以在CPU亂序執(zhí)行中保證真實(shí)的load/store順序的指令

            0x1
            老司機(jī)寫了一個(gè)小程序(注:有誤版)
            // file: order.c

            #define _GNU_SOURCE
            #include <pthread.h>
            #include <stdio.h>
            #include <stdlib.h>
            #include <assert.h>

            union p64 {
                int i;
                char padding[64];
                long align8;
            };

            volatile union p64 v1, v2;
            int b;

            void *
            run1(void *ignore)
            {
                for (;;) {
                    while (!b);
                    if (v1.i || v2.i) {
                        puts("assert error 1");
                        exit(-1);
                    }
                    v1.i = 1;
                    asm ("sfence": : :"memory");
                    v2.i = 1;
                    asm ("sfence": : :"memory");
                    b = 0; 
                }
            }

            int
            main()
            {
                pthread_t p;
                pthread_create(&p, NULL, run1, NULL);
                int cnt = 0;

                for (;; cnt++) {
                    v1.i = v2.i = 0;
                    asm ("sfence": : :"memory");
                    b = 1;
                    asm ("sfence": : :"memory");
                    int icnt = 0;
                    for (;; icnt++) {
                        int i1 = v1.i;
                        asm ("lfence": : :"memory");
                        int i2 = v2.i;
                        if (i1 && i2)   break;
                        if (i1 < i2) {
                            printf("assert error, cnt = %d, icnt = %d, i1 = %d, i2 = %d\n", cnt, icnt, i1, i2);
                            exit(-1);
                        }
                    }
                }
                return 0;
            }

            大概邏輯是: 一共有3個(gè)變量,v1.iv2.ib ,起了2個(gè)線程,一個(gè)順序?qū)懭雟1和v2,一個(gè)讀v1和v2,互相通過改變b的值來通訊,然后兩個(gè)線程不停循環(huán)。

            這個(gè)程序會掛在
            printf("assert error, cnt = %d, icnt = %d, i1 = %d, i2 = %d\n", cnt, icnt, i1, i2); 
            這條斷言上,意思是線程1在順序?qū)懭雟1和v2,但是主線程卻出現(xiàn)讀到 v1=0,v2=1的情況。

            0x2

            然后我?guī)兔θタ戳艘幌拢X得這種寫法甚是粗暴,于是原樣照搬了一個(gè)c++11版:

            #include <stdio.h>
            #include <stdlib.h>
            #include <assert.h>

            #include <atomic>
            #include <thread>

            using namespace std;

            union p64 {
                atomic<int> i;
                char padding[64];
                long align8;
            };

            volatile union p64 v1, v2;
            atomic<int> b;

            void *
            run1()
            {
                int rcnt = 0;
                for (;; rcnt++) {
                    while (!b.load());
                    if (v1.i.load() || v2.i.load()) {
                        puts("assert error 1");
                        exit(-1);
                    }
                    v1.i.store(1);
                    v2.i.store(1);
                    b.store(0);
                }
            }

            int
            main()
            {
                // init
                v1.i.store(0);
                v2.i.store(0);
                thread t(run1);
                int cnt = 0;
                for (;; cnt++) {
                    v1.i.store(0);
                    v2.i.store(0);
                    b.store(1);
                    int icnt = 0;
                    for (;; icnt++) {
                        int b2 = b.load();
                        int i1 = v1.i.load();       // *****
                        int i2 = v2.i.load();       // *****
                        if (i1 && i2)   break;
                        if (i1 < i2) {
                            printf("assert error, cnt = %d, icnt = %d, i1 = %d, i2 = %d\n", cnt, icnt, i1, i2);
                            exit(-1);
                        }
                        if (i1 == 0 && i2 == 0 && b2 == 0) break;
                    }
                }
                return 0;
            }

            因?yàn)槭窃瓨诱瞻幔钥隙ㄟ€是會掛,但是畢竟語義上更好理解了

            我們先來分析一下為什么會掛

            • 線程1對于v1,v2的寫入順序一定是一致的
            • Memory Barrier也保證了他們寫入順序?qū)ζ渌€程的可見性(很有迷惑性的一點(diǎn))
            • 但是主線程卻可以讀到 v1=0,v2=1的情況
            • 所以情況就是雖然順序?qū)懭肓耍莿e的線程沒有看到正確的順序?
            • Intel: 并不是!
            • 原因是搞錯(cuò)了因果關(guān)系,他真正保證的順序是當(dāng)你讀到v2的new value的時(shí)候,那么v1也一定被寫入了。
            • 解決方案就是互換上面代碼中我用**星號**標(biāo)注出的兩行
            • done

            在舊寫法中,掛掉的情況是線程1寫入v1 = 1,主線程讀v1,沒有讀到,那么主線程認(rèn)為v1是0,然后線程1繼續(xù)寫入v2,主線程讀到了,主線程認(rèn)為v2是1。 然后掛在了斷言上。

            兩行互換后,主線程首先讀取v2,如果v2已經(jīng)是1了,那么v1也一定是1,反之亦然。

            0x3

            當(dāng)然,想讓跑通那個(gè)例子不需要那么多的atomic<>,精簡之后利用c++11的memory_order可以寫成如下:

            #include <stdio.h>
            #include <stdlib.h>
            #include <assert.h>

            #include <atomic>
            #include <thread>

            using namespace std;

            union p64 {
                int i;
                char padding[64];
                long align8;
            };

            volatile union p64 v1, v2;
            atomic<int> b;    // variable b as a guard

            void *
            run1()
            {
                int rcnt = 0;
                for (;; rcnt++) {
                    while (!b.load());
                    if (v1.i || v2.i) {
                        puts("assert error 1");
                        exit(-1);
                    }
                    v1.i = 1;
                    v2.i = 1;
                    b.store(0, memory_order_release);
                }
            }
            int
            main()
            {
                // init
                v1.i = 0;
                v2.i = 0;
                thread t(run1);
                int cnt = 0;

                for (;; cnt++) {
                    v1.i = 0;
                    v2.i = 0;
                    b.store(1, memory_order_release);
                    int icnt = 0;
                    for (;; icnt++) {
                        int b2 = b.load(memory_order_acquire);
                        if (b2 != 0) {
                            continue
                        }
                        int i1 = v1.i;
                        int i2 = v2.i;
                        if (i1 && i2)   break;
                        if (i1 < i2) {
                            printf("assert error 2, cnt = %d, icnt =  %d, i1 = %d, i2 = %d\n", cnt, icnt, i1, i2);
                            exit(-1);
                        }
                    }
                }
                return 0;
            }

            利用變量b在兩個(gè)線程之間同步,如下圖

             (Thead 1)

               v1.i = 1;
               v2.i = 1;
               
               b.store(0, memory_order_release) <---+
                                                                         |
                                                            synchronize with b
                                                             (happend before)
                                                                         |
                                                                        +----->  b.load(memory_order_acquire)
                                                                                      
                                                                                    i1 = v1.i
                                                                                    i2 = v2.i

                                                                                   (Thread 2)

            我們查看下生成的代碼
            g++ -std=c++11 -pthread -g -O2 order.cpp

             v1.i = 1;
              400be6:       c7 05 d0 10 20 00 01    movl   $0x1,0x2010d0(%rip)        # 601cc0 <v1>
              400bed:       00 00 00 
                    v2.i = 1;
              400bf0:       c7 05 86 10 20 00 01    movl   $0x1,0x201086(%rip)        # 601c80 <v2>
              400bf7:       00 00 00 
                    memory_order __b = __m & __memory_order_mask;
                    __glibcxx_assert(__b != memory_order_acquire);
                    __glibcxx_assert(__b != memory_order_acq_rel);
                    __glibcxx_assert(__b != memory_order_consume);

                    __atomic_store_n(&_M_i, __i, __m);
              400bfa:       c7 05 5c 10 20 00 00    movl   $0x0,0x20105c(%rip)        # 601c60 <b>
              400c01:       00 00 00 
                    b.store(0, memory_order_release);

              

              400a58:       8b 05 02 12 20 00       mov    0x201202(%rip),%eax        # 601c60 <b>
                        int b2 = b.load(memory_order_consume);
                        if (b2 != 0) {
              400a5e:       85 c0                   test   %eax,%eax
              400a60:       75 f3                   jne    400a55 <main+0x55>
                            continue
                        }
                        int i1 = v1.i;
              400a62:       8b 0d 58 12 20 00       mov    0x201258(%rip),%ecx        # 601cc0 <v1>
                        int i2 = v2.i;
              400a68:       44 8b 05 11 12 20 00    mov    0x201211(%rip),%r8d        # 601c80 <v2>

            看來Intel的Strong Memory Model已經(jīng)保證了這一點(diǎn),Memory Barrier都不需要了

            (雖然標(biāo)題里面有MemoryBarrier,但是內(nèi)容里面根本沒涉及的樣子。。)

            posted on 2016-01-19 16:13 右席 閱讀(16776) 評論(1)  編輯 收藏 引用 所屬分類: 搬磚之路
            91精品国产高清久久久久久国产嫩草 | 久久久久国色AV免费观看| 91久久婷婷国产综合精品青草 | 久久久久99精品成人片| 久久人人爽人人爽人人片AV东京热| 久久五月精品中文字幕| 亚洲AV无码久久| 国产精品免费久久久久影院| 久久中文字幕精品| 久久精品国产99国产精偷| 亚洲欧美日韩精品久久亚洲区| 久久精品中文闷骚内射| 久久乐国产精品亚洲综合| 97久久精品无码一区二区| 亚洲成av人片不卡无码久久| 久久精品国产亚洲沈樵| 久久久久久国产精品无码下载| 久久美女网站免费| 久久精品国产AV一区二区三区| segui久久国产精品| 久久精品国产亚洲av麻豆小说| 久久久久综合国产欧美一区二区| 精品久久8x国产免费观看| 久久亚洲AV无码精品色午夜| 久久精品亚洲男人的天堂| 精品综合久久久久久97超人| 奇米影视7777久久精品| 久久无码AV中文出轨人妻| 久久www免费人成看国产片| 久久91精品国产91久久小草| 久久人人爽人人爽人人AV东京热 | 久久婷婷五月综合色奶水99啪 | 久久精品国产WWW456C0M| 国内精品久久久久影院免费| 久久天天躁狠狠躁夜夜躁2O2O| 久久亚洲精品成人无码网站| 色诱久久av| 精品久久久一二三区| 久久综合五月丁香久久激情| 亚洲va久久久久| 国产欧美久久久精品影院|