最大公約數問題
以上內容摘自《編程之美》P150-154。
為了方便使用,下面是可拷貝的代碼:
Math.h
#pragma once class Math { public: Math(void); ~Math(void); public : //編程之美P150-154 //求最大公約數,歐幾里德——輾轉相除法 static int Gcd1(int x, int y); //求最大公約數,歐幾里德——輾轉相除法(變相將除法變成了減法) static int Gcd2(int x, int y); static int Gcd3(int x, int y); inline static bool IsEven(int x); inline static int Absolute(int x); };
Math.cpp
#include "Math.h" Math::Math(void) { } Math::~Math(void) { } int Math::Gcd1(int x, int y) { //y, x%y順序不能錯; return y ? Gcd1(y, x % y) : x; } int Math::Gcd2(int x, int y) { //與Gcd1相同的方式,但由于x%y計算速度較x-y要慢,但效果相同,所以換用x - y // 但用減法和除法不同的是,比如和,%20=10,-20=70,也就是-4×=10 // 也就是說迭代次數較Gcd1而言通常是增加了。 return y ? Gcd1(y, x - y) : x; } int Math::Gcd3(int x, int y) { if(x < y) return Gcd3(y, x); if(y == 0) return x; else { if(IsEven(x)) { if(IsEven(y)) return (Gcd3(x >> 1, y >> 1) << 1); else return Gcd3(x >> 1, y); } else { if(IsEven(y)) return Gcd3(x, y >> 1); else return Gcd3(y, x - y); } } } bool Math::IsEven(int x) { return !(bool)x & 0x0001; } int Math::Absolute(int x) { return x < 0 ? -x : x; }
Main.cpp
#include <stdafx.h> #include <iostream> #include "Math.h" using namespace std; int _tmain(const int & arg) { cout<<"Math::Gcd1(42,30) = "<<Math::Gcd1(42,30)<<endl; cout<<"Math::Gcd1(30,42) = "<<Math::Gcd1(30,42)<<endl; cout<<"Math::Gcd1(50,50) = "<<Math::Gcd1(50,50)<<endl; cout<<"Math::Gcd1(0,0) = "<<Math::Gcd1(0,0)<<endl; cout<<"Math::Gcd1(-42,-30) = "<<Math::Gcd1(-42,-30)<<endl; cout<<"Math::Gcd1(-42,30) = "<<Math::Gcd1(-42,30)<<endl; cout<<"------------------------------"<<endl; cout<<"Math::Gcd2(42,30) = "<<Math::Gcd2(42,30)<<endl; cout<<"Math::Gcd2(30,42) = "<<Math::Gcd2(30,42)<<endl; cout<<"Math::Gcd2(50,50) = "<<Math::Gcd2(50,50)<<endl; cout<<"Math::Gcd2(0,0) = "<<Math::Gcd2(0,0)<<endl; cout<<"Math::Gcd2(-42,-30) = "<<Math::Gcd2(-42,-30)<<endl; cout<<"Math::Gcd2(-42,30) = "<<Math::Gcd2(-42,30)<<endl; cout<<"------------------------------"<<endl; cout<<"Math::Gcd3(42,30) = "<<Math::Gcd3(42,30)<<endl; cout<<"Math::Gcd3(30,42) = "<<Math::Gcd3(30,42)<<endl; cout<<"Math::Gcd3(50,50) = "<<Math::Gcd3(50,50)<<endl; cout<<"Math::Gcd3(0,0) = "<<Math::Gcd3(0,0)<<endl; cout<<"Math::Gcd3(-42,-30) = "<<Math::Gcd3(-42,-30)<<endl; cout<<"Math::Gcd3(-42,30) = "<<Math::Gcd3(-42,30)<<endl; return 0; }
不過有一點值得一提,就是所謂性能最好效率最高的Gcd3不支持負數,也就是最后兩行測試代碼無法通過。但是限于對負數的最大公約數并沒有定義,也就是說即便上面的Gcd1和Gcd2好像算出了負數,但它們的結果沒有意義。
posted on 2009-03-04 23:52 volnet 閱讀(1019) 評論(0) 編輯 收藏 引用 所屬分類: 知識庫(KnowledgeLibrary)