法線的逆轉置矩陣推倒(轉)
Transforming Planes
If we have a plane vector n = [a, b, c, d] which describes a plane then for any point p = [x, y, z, 1] in that plane the follow equation holds:
nt p = ax + by + cz + d = 0
If for a point p on the plane, we apply an invertible transformation R to get the transformed point p1, then the plane vector n1 of the transformed plane is given by applying a corresponding transformation Q to the original plane vector n where Q is unknown.
p1 = R p
n1 = Q n
n1t p1 = 0
(Q n)t (R p) = 0
nt Qt R p = 0
Qt R = I
Qt = R-1
Q = (R-1)t
n1 = Q n = (R-1)t n
posted on 2017-12-06 11:39 此最相思 閱讀(631) 評論(0) 編輯 收藏 引用 所屬分類: mathematics