青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

milkyway的窩

最初想法的誕生地

 

Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0

Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0

 

Introduction

Windows CE uses .bib (binary image builder) files to track, among other things, the memory layout of bootloaders as well as OS images. If you’re writing a new BSP, you’ll definitely need a config.bib file for your OS, and you’ll likely need a boot.bib file for your bootloader.

 

Let’s take a few minutes to understand how .bib files relate to memory usage. It’s going to be muddy at the beginning, but I promise if you stick with me through the end you’ll be glad that you did. Well, maybe you won’t be glad but you’ll know more about .bib files. Let’s get to it!

 

OEMAddressTable

Before we look at the .bib files themselves, it’s important to understand the OEMAddressTable. This table defines the mappings between physical and virtual addresses. For MIPS and SH processors, this table is hard coded into the processor. For x86 and ARM, the mapping is defined in a variable called OEMAddressTable. Since .bib files operate largely on virtual addresses, we need to remember to reference the OEMAddressTable to address any confusion about what is happening at a particular physical address.

 

The table’s layout is quite simple. Each line creates a mapping of virtual addresses to physical addresses. The syntax is: Base virtual address, base physical address, size. Let’s take an example from the Mainstone BSP:

 

DCD     0x80000000, 0xA0000000,  64     ; MAINSTONEII: SDRAM (64MB).

DCD     0x88000000, 0x5C000000,   1     ; BULVERDE: Internal SRAM (64KB bank 0).

DCD     0x88100000, 0x58000000,   1     ; BULVERDE: Internal memory PM registers.

DCD     0x88200000, 0x4C000000,   1     ; BULVERDE: USB host controller.

 

So in the first line, we are mapping the 64MB of RAM at physical address 0xA0000000 to the virtual address 0x80000000. Since 64MB = 0x04000000 this means that the physical addresses 0xA000000-0xA4000000 are now mapped to virtual addresses 0x80000000-0x84000000. Likewise, we’ve mapped the USB host controller which resides at physical addresses 0x4C000000-0x4C100000 to virtual addresses 0x88200000-0x8300000.

 

Inside Windows CE, memory access is virtual by default. So when we access memory at 0x81005000, we’ll be accessing some physical memory in the Mainstone’s 64MB SDRAM bank. If we access memory at 0x88201000, we’ll be accessing the USB host controller, physically. If we access memory at 0x86001000, we’ll get a page fault because this virtual address has no corresponding physical address.

 

Now that we understand the OEMAddressTable, let’s talk about the .bib files.

 

Config.bib – this contains a lot of configuration info for a CE OS image. The MEMORY section is what we’ll focus on – it defines the memory blueprint for the CE image. Here are the important terms:

 

RAMIMAGE – This is the virtual address region that the kernel and any other components you select for your image will be placed in. This can be RAM or linearly addressable flash. Your config.bib file should have exactly one RAMIMAGE section. It needs to be virtually contiguous, and it needs to be large enough to hold whatever components you’ve selected.

 

RAM – This is the virtual address region of RAM that the kernel can allocate to applications and RAM-based file systems. It needs to be virtually contiguous. (If you need a non-contiguous section, you can allocate another, non-virtually-contiguous section at run-time by implementing the OEMGetExtensionDRAM function, but that’s outside our scope)

 

RESERVED – These are virtual address regions that are set aside – the kernel won’t allocate memory in these addresses and components won’t be placed in these addresses.

 

AUTOSIZE - In the CONFIG section, we have the AUTOSIZE=ON (or OFF) variable. If this variable is on, it will treat the RAMIMAGE and RAM regions as a single region, allocating just enough space to hold all of the components to the RAMIMAGE section and making the rest of the space available as RAM. This is a pretty convenient and easy way to make sure you’re getting maximal use out of your RAM. One thing autosize won’t do is interfere with reserved or unallocated regions.

 

Eboot.bib (sometimes known as boot.bib) – this works identically to config.bib, except we’re building a bootloader image as opposed to one with a full kernel. All of the terminology is exactly the same. The only difference is, in the case where we’re not using an MMU in the bootloader (CEPC is an example of these), the addresses will be physical as opposed to virtual. Otherwise, the layout is identical.

 

Bringing it together

In almost all cases, the bootloader and OS use the same OEMAddressTable. Thus, they have the same virtual address space.

 

This is especially useful when it comes to RESERVED regions. Since nothing will be allocated or placed in these addresses, only components that refer directly to the address will have access. That means we can use these regions for special buffers (say, DMA) or passing arguments passed in from the bootloader to the OS. It also means that, if you want, you can leave the bootloader in RAM.

 

Keep in mind that while RESERVED means that we won’t allocate/place components in those virtual addresses, by default if an area isn’t specified in a .bib file then we won’t allocate/place in it. This means RESERVED is really more of a comment then anything. However, it is useful in our .bib files because it helps us identify the location of special buffers and arguments so that we know not to overwrite them in other modules.

 

An Example

Let’s take a look at a simplified example in the CEPC BSP:

Here’s our OEMAddressTable (platform\common\src\x86\common\startup\startup.asm):

_OEMAddressTable:

        dd 80000000h,     0,      04000000h

This means that we’re mapping physical addresses 0x00000000-0x04000000 to virtual addresses 0x80000000-0x84000000. That’s 64MB of RAM.

 

Here’s our boot.bib (platform\CEPC\src\bootloader\eboot\boot.bib):

MEMORY

;   Name     Start     Size      Type

;   ------- -------- -------- ----

    EBOOT    00130000 00020000 RAMIMAGE

    RAM      00150000 00070000 RAM

    ETHDMA   00200000 00020000 RESERVED

 

Remember the CEPC bootloader uses physical addresses. So in virtual address terms, our bootloader code is living at 0x80130000-0x80150000, with RAM available from 0x80150000-0x801C0000. We’re reserving a buffer for our Ethernet card from 0x80200000-0x80220000.

 

And a condensed version of config.bib (platform\CEPC\files\config.bib):

 

MEMORY

;   Name     Start     Size      Type

;   ------- -------- -------- ----

; 64 MB of RAM (note: AUTOSIZE will adjust boundary)

    NK       80220000 009E0000 RAMIMAGE

    RAM      80C00000 03400000 RAM

    DMA      80100000 00030000 RESERVED   ; Native DMA reserved.

    BOOTARGS 801FFF00 00000100 RESERVED   ; Boot arguments

    EDBG_DMA 80200000 00020000 RESERVED   ; EDBG DMA buffer

 

 

There are several interesting things going on here:

 

First, our OS image (NK) starts at 0x80220000, and RAM resides directly above it. That means we’re not allowing any components or allocation to write below 0x80220000, and thus our bootloader code is protected.

 

Second, note that we have also reserved some regions. The EDBG_DMA corresponds to the same addresses that the bootloader reserved. This way we can make a smooth transition from bootloader to kernel without worrying about the contents of this memory being tampered with. 

 

Another region has been reserved from 0x80100000-0x80130000. This is very close to the start of our bootloader. If we reserved even a byte more, we would not expect our bootloader to continue to be executable after we boot the OS. However, since the bootloader’s address space isn’t referenced by any region in config.bib, we know that it will remain untouched by the OS. This way we can jump back to the bootloader code during a warm reset, if desired.

 

We’re not required to keep our bootloader in memory, though. We could easily place the bootloader (in boot.bib) at the end of the RAM space (in config.bib). This way after the image was successfully downloaded we could allocate memory over the top of the bootloader and make full use of all of our system RAM. What you don’t want to do is intersect the bootloader with the RAMIMAGE part of config.bib – this means you’ll overwrite the code you’re running to download, during download!

 

Finally, notice we have a special reserved region called “boot arguments”.  If we at the CEPC’s bootloader we will see that it writes explicitly to the (physical) 0x001FFF00-0x002000000. You’ll also notice this isn’t used anywhere in the boot.bib layout. That means we can be assured it will be untouched (unless, of course, something else in the bootloader writes explicitly to that address range).

 

This is how we pass arguments from the bootloader to the OS – the OS can read directly from 0x801FFF00 and be assured that the kernel won’t tamper with it because it is RESERVED. Technically, we could have indicated that area as RESERVED in the bootloader as well.

 

Hopefully this has given you some insight into .bib memory layouts.

posted on 2007-04-19 11:03 milkyway 閱讀(1477) 評論(1)  編輯 收藏 引用

評論

# re: Understanding Memory Sections in config.bib, boot.bib, and OEMAddressTable in Windows CE 5.0 and 6.0 2007-04-19 11:04 相思酸中有甜

注意
1。以太網卡DMA在eboot.bib和config.bib的復用;
2。不要在config.bib中覆蓋eboot的IMAGE  回復  更多評論   

導航

統計

公告

隨筆皆原創,文章乃轉載. 歡迎留言!

常用鏈接

留言簿(37)

隨筆分類(104)

隨筆檔案(101)

文章分類(51)

文章檔案(53)

wince牛人

搜索

積分與排名

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲先锋成人| 亚洲国产精品久久| 中文精品99久久国产香蕉| 免费观看亚洲视频大全| 亚洲欧洲日夜超级视频| 亚洲激情视频网| 国产精品高潮呻吟久久| 久久精品免费| 美国十次成人| 亚洲一区二区三区免费视频| 亚洲欧美日韩国产| 尤物在线精品| 亚洲免费激情| 激情视频亚洲| 亚洲精品你懂的| 欧美日韩中文字幕在线视频| 久久精品国产综合精品| 欧美+日本+国产+在线a∨观看| 99精品国产高清一区二区 | 在线国产亚洲欧美| 亚洲国产精品一区二区三区 | 亚洲免费视频在线观看| 黄色精品一区二区| 99精品热视频只有精品10| 国产综合色产| av成人天堂| 亚洲国产精品一区二区第四页av| 一本色道久久88综合亚洲精品ⅰ| 一区在线观看视频| 一本久道久久综合狠狠爱| 在线成人中文字幕| 亚洲在线视频网站| 9久re热视频在线精品| 欧美在线3区| 亚洲欧美日韩国产成人| 欧美电影在线播放| 久久久不卡网国产精品一区| 欧美日韩一区二区三区| 欧美激情中文字幕乱码免费| 国产午夜精品福利| 妖精成人www高清在线观看| 在线精品亚洲| 欧美自拍偷拍午夜视频| 亚洲新中文字幕| 欧美国产精品v| 你懂的国产精品永久在线| 国产精品视频一区二区高潮| 日韩视频中午一区| 亚洲精品久久久久久久久久久久 | 91久久精品国产91性色tv| 国产亚洲欧洲一区高清在线观看| 亚洲精品社区| 亚洲激情视频网站| 久久天堂成人| 久久人人爽人人爽| 国产午夜精品在线| 午夜精品久久久久久久久| 99视频精品| 欧美大学生性色视频| 蜜桃久久av一区| 好吊色欧美一区二区三区视频| 午夜亚洲性色福利视频| 性欧美激情精品| 国产精品一二三四| 亚洲女人av| 欧美专区在线| 国产欧美日韩在线播放| 欧美一乱一性一交一视频| 性欧美暴力猛交69hd| 国产精品你懂的| 亚洲欧美日韩国产综合精品二区| 欧美一级理论片| 国产尤物精品| 开元免费观看欧美电视剧网站| 美日韩精品视频免费看| 在线精品视频一区二区| 久久久亚洲欧洲日产国码αv | 销魂美女一区二区三区视频在线| 国产精品久久久久aaaa| 午夜欧美大尺度福利影院在线看| 欧美一级黄色录像| 精品va天堂亚洲国产| 免费观看亚洲视频大全| 亚洲日本电影在线| 亚洲欧美国产精品桃花| 国产视频久久久久久久| 麻豆国产精品777777在线| 亚洲精品久久久一区二区三区| 亚洲在线免费观看| 激情自拍一区| 欧美日韩18| 欧美亚洲在线播放| 亚洲国产精品一区二区www在线 | 亚洲精品资源美女情侣酒店| 国产精品高潮呻吟视频| 久久国产精品一区二区三区四区 | 99国产精品久久久久久久久久 | 欧美α欧美αv大片| 艳女tv在线观看国产一区| 国产精品日本欧美一区二区三区| 久久久999| 亚洲精选大片| 玖玖玖国产精品| 亚洲一区制服诱惑| 亚洲国产老妈| 国产网站欧美日韩免费精品在线观看| 欧美www在线| 欧美在线视频日韩| 宅男噜噜噜66一区二区| 亚洲第一二三四五区| 欧美在线视频不卡| 亚洲国产一区二区精品专区| 国产精品久久久91| 欧美激情导航| 久久久精彩视频| 亚洲女同在线| 一区二区三区产品免费精品久久75| 美国三级日本三级久久99| 午夜精品一区二区三区在线| 日韩一级精品视频在线观看| 一区精品在线| 国产亚洲一区精品| 国产精品久久久久毛片软件 | 久久久久一区二区三区| 一本色道久久综合亚洲精品不| 亚洲第一精品福利| 免费高清在线视频一区·| 久久久久九九九| 午夜久久久久久| 午夜精品福利一区二区三区av | 亚洲欧洲一二三| 一区二区三区在线看| 国模大胆一区二区三区| 国产欧美日韩三区| 国产精品一区在线观看| 欧美亚州韩日在线看免费版国语版| 欧美高清在线精品一区| 男女激情视频一区| 欧美暴力喷水在线| 免费av成人在线| 欧美国产日韩一区二区在线观看| 猛干欧美女孩| 欧美激情国产精品| 欧美麻豆久久久久久中文| 欧美精品免费看| 欧美久久久久久久久久| 欧美精品少妇一区二区三区| 欧美日韩午夜激情| 国产精品精品视频| 国产精品午夜春色av| 国产欧美一区二区视频| 国产一区视频观看| 影音先锋成人资源站| 91久久亚洲| 中文国产一区| 欧美资源在线观看| 鲁鲁狠狠狠7777一区二区| 免费在线一区二区| 亚洲日本在线观看| 在线一区观看| 欧美一级免费视频| 免费成人在线观看视频| 欧美日韩中文在线| 国产欧美一区二区精品性| 韩国一区二区在线观看| 亚洲日韩视频| 亚洲免费影院| 久久国产精品一区二区三区四区| 亚洲精品一区久久久久久| 一区二区冒白浆视频| 亚洲一级免费视频| 久久深夜福利| 欧美日韩中文在线| 精品91免费| 一区二区三区精品在线| 久久激情视频| 亚洲日本无吗高清不卡| 羞羞漫画18久久大片| 欧美成人精品在线播放| 国产美女精品视频| 亚洲乱码国产乱码精品精 | 激情久久久久久久| 一本色道88久久加勒比精品| 欧美资源在线| 99精品国产在热久久| 久久一区二区视频| 国产精品免费在线| 亚洲精品免费网站| 久久久久国产一区二区三区| 亚洲精品国产系列| 性欧美大战久久久久久久久| 欧美精品在线免费| 亚洲成色精品| 久久精品欧洲| 一本久道久久久| 欧美美女操人视频| 亚洲级视频在线观看免费1级| 欧美一区二区在线视频| 亚洲免费播放| 欧美激情第10页|