• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            SGU 104. Little shop of flowers

            104. Little shop of flowers

            time limit per test: 0.50 sec.
            memory limit per test: 4096 KB

            PROBLEM

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

               

            V A S E S

               

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            ASSUMPTIONS

            • 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

               

            • FV ≤ 100 where V is the number of vases.

               

            • -50 £ Aij £ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

               

             

            Input

            • The first line contains two numbers: F, V.

               

            • The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

               

             

            Output

            • The first line will contain the sum of aesthetic values for your arrangement.

               

            • The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put.

               

             

            Sample Input

            3 5
                        7 23 -5 -24 16
                        5 21 -4 10 23
                        -21 5 -4 -20 20
                        

            Sample Output

            53
                        2 4 5
                        
            Analysis

            It is called a problem derived from IOI. As a typical DP problem, the only thing we need to think about is the dynamic function. This problem is harder since we need to record the tracy of dynamic programing.
            Let's assume that dp[i][j] means the maximum sum of  aesthetic values about first i flowers puts in first j vases. Then, since the only choice for the ith flower is whether put or not, the function is obvious: dp[i][j]=max{dp[i][j-1],dp[i-1][j-1]+a[i][j]}. Limitness is that i<j should be held and record the action "put".

            Code
            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>
            #define max(a,b) a>b?a:b

            int dp[101][101];
            bool put[101][101];
            int f,v;
            int a[101][101];    

            void putprint(int i,int j){
                
            while (put[i][j]) j--;
                
            if (i>1) putprint(i-1,j-1);
                
            if (i==f) printf("%d\n",j);
                
            else printf("%d ",j);
            }


            int main(){
                
            int i,j;
                
                scanf(
            "%d %d",&f,&v);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v;j++)
                        scanf(
            "%d",&a[i][j]);
                
                memset(dp,
            0,sizeof dp);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v-f+i;j++){
                        dp[i][i
            -1]=-32767;
                        dp[i][j]
            =dp[i-1][j-1]+a[i][j];;put[i][j]=false;
                        
            if (dp[i][j-1]>(dp[i-1][j-1]+a[i][j])){
                            dp[i][j]
            =dp[i][j-1];
                            put[i][j]
            =true;
                        }
                            
                    }

                printf(
            "%d\n",dp[f][v]);
                putprint(f,v);
                
            return 0;
            }

            posted on 2008-11-03 14:35 幻浪天空領(lǐng)主 閱讀(1014) 評論(1)  編輯 收藏 引用 所屬分類: SGU

            評論

            # re: SGU 104. Little shop of flowers 2011-06-07 11:14 zqynux

            dp[i][i-1]=-32767;
            這句話為什么可以解決負數(shù)的問題??  回復  更多評論   

            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            導航

            統(tǒng)計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久久久综合一区中文字幕| 久久WWW免费人成—看片| 欧美国产成人久久精品| 亚洲va久久久噜噜噜久久狠狠 | 99久久人妻无码精品系列 | 亚洲国产成人精品女人久久久 | 久久免费大片| 久久亚洲美女精品国产精品| 久久99精品综合国产首页| 狠狠人妻久久久久久综合蜜桃| 亚洲国产成人精品无码久久久久久综合 | 香蕉aa三级久久毛片| 人妻久久久一区二区三区| 国产成人无码精品久久久免费| 亚洲人成网站999久久久综合| 99久久精品国产高清一区二区| 久久99精品久久久久久9蜜桃| 亚洲国产欧洲综合997久久| 久久青青草原精品国产软件| 精品无码久久久久久尤物| 久久91精品国产91| 久久亚洲色一区二区三区| 久久综合亚洲欧美成人| 亚洲国产精品无码久久久久久曰| 久久久久亚洲AV无码网站| 三级三级久久三级久久| 久久久久国色AV免费观看| Xx性欧美肥妇精品久久久久久| 99久久精品费精品国产一区二区| 久久久久久国产精品无码下载 | 国产福利电影一区二区三区,免费久久久久久久精| 久久精品一区二区三区中文字幕 | 国产精品日韩深夜福利久久| 久久久久久久97| 激情伊人五月天久久综合| 亚洲AV无一区二区三区久久| 伊人久久大香线蕉综合影院首页| 精品国产乱码久久久久久人妻| 热久久最新网站获取| 久久久精品久久久久影院| 久久天天躁夜夜躁狠狠躁2022 |