• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Using memset(), memcpy(), and memmove() in C

            The article is from http://www.java-samples.com/showtutorial.php?tutorialid=591

            To set all the bytes in a block of memory to a particular value, use memset(). The function prototype is

            void * memset(void *dest, int c, size_t count);
            

            The argument dest points to the block of memory. c is the value to set, and count is the number of bytes, starting at dest, to be set. Note that while c is a type int, it is treated as a type char. In other words, only the low-order byte is used, and you can specify values of c only in the range 0 through 255.

            Use memset() to initialize a block of memory to a specified value. Because this function can use only a type char as the initialization value, it is not useful for working with blocks of data types other than type char, except when you want to initialize to 0. In other words, it wouldn't be efficient to use memset() to initialize an array of type int to the value 99, but you could initialize all array elements to the value 0. memset() will be demonstrated in program below.

            The memcpy() Function

            memcpy() copies bytes of data between memory blocks, sometimes called buffers. This function doesn't care about the type of data being copied--it simply makes an exact byte-for-byte copy. The function prototype is

            void *memcpy(void *dest, void *src, size_t count);
            

            The arguments dest and src point to the destination and source memory blocks, respectively. count specifies the number of bytes to be copied. The return value is dest. If the two blocks of memory overlap, the function might not operate properly--some of the data in src might be overwritten before being copied. Use the memmove() function, discussed next, to handle overlapping memory blocks. memcpy() will be demonstrated in program below.

            The memmove() Function

            memmove() is very much like memcpy(), copying a specified number of bytes from one memory block to another. It's more flexible, however, because it can handle overlapping memory blocks properly. Because memmove() can do everything memcpy() can do with the added flexibility of dealing with overlapping blocks, you rarely, if ever, should have a reason to use memcpy(). The prototype is

            void *memmove(void *dest, void *src, size_t count);
            

            dest and src point to the destination and source memory blocks, and count specifies the number of bytes to be copied. The return value is dest. If the blocks overlap, this function ensures that the source data in the overlapped region is copied before being overwritten. Sample program below demonstrates memset(), memcpy(), and memmove().

            A demonstration of memset(), memcpy(), and memmove().

            1: /* Demonstrating memset(), memcpy(), and memmove(). */
            2:
            3: #include <stdio.h>
            4: #include <string.h>
            4:
            5: char message1[60] = "Four score and seven years ago ...";
            6: char message2[60] = "abcdefghijklmnopqrstuvwxyz";
            7: char temp[60];
            8:
            9: main()
            10: {
            11:    printf("\nmessage1[] before memset():\t%s", message1);
            12:    memset(message1 + 5, `@', 10);
            13:    printf("\nmessage1[] after memset():\t%s", message1);
            14:
            15:    strcpy(temp, message2);
            16:    printf("\n\nOriginal message: %s", temp);
            17:    memcpy(temp + 4, temp + 16, 10);
            18:    printf("\nAfter memcpy() without overlap:\t%s", temp);
            19:    strcpy(temp, message2);
            20:    memcpy(temp + 6, temp + 4, 10);
            21:    printf("\nAfter memcpy() with overlap:\t%s", temp);
            22:
            23:    strcpy(temp, message2);
            24:    printf("\n\nOriginal message: %s", temp);
            25:    memmove(temp + 4, temp + 16, 10);
            26:    printf("\nAfter memmove() without overlap:\t%s", temp);
            27:    strcpy(temp, message2);
            28:    memmove(temp + 6, temp + 4, 10);
            29:    printf("\nAfter memmove() with overlap:\t%s\n", temp);
            30:
            31: }
            message1[] before memset():     Four score and seven years ago ...
            message1[] after memset():      Four @@@@@@@@@@seven years ago ...
            Original message: abcdefghijklmnopqrstuvwxyz
            After memcpy() without overlap: abcdqrstuvwxyzopqrstuvwxyz
            After memcpy() with overlap:    abcdefefefefefefqrstuvwxyz
            Original message: abcdefghijklmnopqrstuvwxyz
            After memmove() without overlap:        abcdqrstuvwxyzopqrstuvwxyz
            After memmove() with overlap:   abcdefefghijklmnqrstuvwxyz
            

            ANALYSIS: The operation of memset() is straightforward. Note how the pointer notation message1 + 5 is used to specify that memset() is to start setting characters at the sixth character in message1[] (remember, arrays are zero-based). As a result, the 6th through 15th characters in message1[] have been changed to @.

            When source and destination do not overlap, memcpy() works fine. The 10 characters of temp[] starting at position 17 (the letters q through z) have been copied to positions 5 though 14, where the letters e though n were originally located. If, however, the source and destination overlap, things are different. When the function tries to copy 10 characters starting at position 4 to position 6, an overlap of 8 positions occurs. You might expect the letters e through n to be copied over the letters g through p. Instead, the letters e and f are repeated five times.

            If there's no overlap, memmove() works just like memcpy(). With overlap, however, memmove() copies the original source characters to the destination.

            posted on 2010-08-31 11:06 lhking 閱讀(548) 評論(0)  編輯 收藏 引用

            導航

            <2011年10月>
            2526272829301
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            常用鏈接

            留言簿

            隨筆檔案

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            色偷偷888欧美精品久久久| 久久91精品国产91| 国产精品一久久香蕉国产线看观看| 国色天香久久久久久久小说| 国产亚洲综合久久系列| 99久久综合狠狠综合久久| 久久久久亚洲AV无码观看 | 精品久久无码中文字幕| 久久国产精品99精品国产987| 久久夜色精品国产www| 色偷偷88888欧美精品久久久| 久久精品一区二区影院| 亚洲AV无码久久精品成人| 久久国产免费直播| 久久精品国产网红主播| 亚洲日本va午夜中文字幕久久| 久久久一本精品99久久精品88| 日本加勒比久久精品| 国产精品美女久久久免费| 久久棈精品久久久久久噜噜| 18禁黄久久久AAA片| 国产综合成人久久大片91| 久久久久成人精品无码中文字幕| 久久精品亚洲男人的天堂| 国产99久久九九精品无码| 97久久超碰成人精品网站| 中文字幕无码免费久久| 人妻系列无码专区久久五月天| 久久99中文字幕久久| 久久久久人妻精品一区二区三区| 亚洲色欲久久久久综合网| 国产69精品久久久久99| 国产成人精品久久综合| 久久国产精品国产自线拍免费| www性久久久com| 久久99精品久久久久久hb无码| 天天躁日日躁狠狠久久 | 亚洲精品白浆高清久久久久久| 2021国内久久精品| 亚洲精品乱码久久久久久| 久久精品人人做人人妻人人玩|