如果你想在Windows平臺(tái)上構(gòu)建服務(wù)器應(yīng)用,那么I/O模型是你必須考慮的。Windows操作系統(tǒng)提供了選擇(Select)、異步選擇(WSAAsyncSelect)、事件選擇(WSAEventSelect)、重疊I/O(Overlapped I/O)和完成端口(Completion Port)共五種I/O模型。每一種模型均適用于一種特定的應(yīng)用場(chǎng)景。程序員應(yīng)該對(duì)自己的應(yīng)用需求非常明確,而且綜合考慮到程序的擴(kuò)展性和可移植性等因素,作出自己的選擇。

我會(huì)以一個(gè)回應(yīng)反射式服務(wù)器(與《Windows網(wǎng)絡(luò)編程》第八章一樣)來(lái)介紹這五種I/O模型。
我們假設(shè)客戶(hù)端的代碼如下(為代碼直觀(guān),省去所有錯(cuò)誤檢查,以下同):

#include <WINSOCK2.H>
#include <stdio.h>

#define SERVER_ADDRESS "137.117.2.148"
#define PORT           5150
#define MSGSIZE        1024

#pragma comment(lib, "ws2_32.lib")

int main()
{
WSADATA     wsaData;
SOCKET      sClient;
SOCKADDR_IN server;
char        szMessage[MSGSIZE];
int         ret;

// Initialize Windows socket library
WSAStartup(0x0202, &wsaData);

// Create client socket
sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Connect to server
memset(&server, 0, sizeof(SOCKADDR_IN));
server.sin_family = AF_INET;
server.sin_addr.S_un.S_addr = inet_addr(SERVER_ADDRESS);
server.sin_port = htons(PORT);

connect(sClient, (struct sockaddr *)&server, sizeof(SOCKADDR_IN));

while (TRUE)
{
    printf("Send:");
gets(szMessage);

    // Send message
    send(sClient, szMessage, strlen(szMessage), 0);

    // Receive message
    ret = recv(sClient, szMessage, MSGSIZE, 0);
    szMessage[ret] = '\0';

    printf("Received [%d bytes]: '%s'\n", ret, szMessage);
}

// Clean up
closesocket(sClient);
WSACleanup();
return 0;
}

客戶(hù)端所做的事情相當(dāng)簡(jiǎn)單,創(chuàng)建套接字,連接服務(wù)器,然后不停的發(fā)送和接收數(shù)據(jù)。

比較容易想到的一種服務(wù)器模型就是采用一個(gè)主線(xiàn)程,負(fù)責(zé)監(jiān)聽(tīng)客戶(hù)端的連接請(qǐng)求,當(dāng)接收到某個(gè)客戶(hù)端的連接請(qǐng)求后,創(chuàng)建一個(gè)專(zhuān)門(mén)用于和該客戶(hù)端通信的套接字和一個(gè)輔助線(xiàn)程。以后該客戶(hù)端和服務(wù)器的交互都在這個(gè)輔助線(xiàn)程內(nèi)完成。這種方法比較直觀(guān),程序非常簡(jiǎn)單而且可移植性好,但是不能利用平臺(tái)相關(guān)的特性。例如,如果連接數(shù)增多的時(shí)候(成千上萬(wàn)的連接),那么線(xiàn)程數(shù)成倍增長(zhǎng),操作系統(tǒng)忙于頻繁的線(xiàn)程間切換,而且大部分線(xiàn)程在其生命周期內(nèi)都是處于非活動(dòng)狀態(tài)的,這大大浪費(fèi)了系統(tǒng)的資源。所以,如果你已經(jīng)知道你的代碼只會(huì)運(yùn)行在Windows平臺(tái)上,建議采用Winsock I/O模型。

一.選擇模型
Select(選擇)模型是Winsock中最常見(jiàn)的I/O模型。之所以稱(chēng)其為“Select模型”,是由于它的“中心思想”便是利用select函數(shù),實(shí)現(xiàn)對(duì)I/O的管理。最初設(shè)計(jì)該模型時(shí),主要面向的是某些使用UNIX操作系統(tǒng)的計(jì)算機(jī),它們采用的是Berkeley套接字方案。Select模型已集成到Winsock 1.1中,它使那些想避免在套接字調(diào)用過(guò)程中被無(wú)辜“鎖定”的應(yīng)用程序,采取一種有序的方式,同時(shí)進(jìn)行對(duì)多個(gè)套接字的管理。由于Winsock 1.1向后兼容于Berkeley套接字實(shí)施方案,所以假如有一個(gè)Berkeley套接字應(yīng)用使用了select函數(shù),那么從理論角度講,毋需對(duì)其進(jìn)行任何修改,便可正常運(yùn)行。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
下面的這段程序就是利用選擇模型實(shí)現(xiàn)的Echo服務(wù)器的代碼(已經(jīng)不能再精簡(jiǎn)了):

#include <winsock.h>
#include <stdio.h>

#define PORT       5150
#define MSGSIZE    1024

#pragma comment(lib, "ws2_32.lib")

int    g_iTotalConn = 0;
SOCKET g_CliSocketArr[FD_SETSIZE];

DWORD WINAPI WorkerThread(LPVOID lpParameter);

int main()
{
WSADATA     wsaData;
SOCKET      sListen, sClient;
SOCKADDR_IN local, client;
int         iaddrSize = sizeof(SOCKADDR_IN);
DWORD       dwThreadId;

// Initialize Windows socket library
WSAStartup(0x0202, &wsaData);

// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));

// Listen
listen(sListen, 3);

// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);

while (TRUE)
{
    // Accept a connection
    sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
    printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));

    // Add socket to g_CliSocketArr
    g_CliSocketArr[g_iTotalConn++] = sClient;
}

return 0;
}

DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int            i;
fd_set         fdread;
int            ret;
struct timeval tv = {1, 0};
char           szMessage[MSGSIZE];

while (TRUE)
{
    FD_ZERO(&fdread);
    for (i = 0; i < g_iTotalConn; i++)
    {
      FD_SET(g_CliSocketArr[i], &fdread);
    }

    // We only care read event
    ret = select(0, &fdread, NULL, NULL, &tv);

    if (ret == 0)
    {
      // Time expired
      continue;
    }

    for (i = 0; i < g_iTotalConn; i++)
    {
      if (FD_ISSET(g_CliSocketArr[i], &fdread))
      {
        // A read event happened on g_CliSocketArr[i]
        ret = recv(g_CliSocketArr[i], szMessage, MSGSIZE, 0);
    if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
    {
     // Client socket closed
          printf("Client socket %d closed.\n", g_CliSocketArr[i]);
     closesocket(g_CliSocketArr[i]);
     if (i < g_iTotalConn - 1)
          {            
            g_CliSocketArr[i--] = g_CliSocketArr[--g_iTotalConn];
          }
        }
    else
    {
     // We received a message from client
          szMessage[ret] = '\0';
     send(g_CliSocketArr[i], szMessage, strlen(szMessage), 0);
        }
      }
    }
}

return 0;
}

服務(wù)器的幾個(gè)主要?jiǎng)幼魅缦拢?br style="line-height: normal; ">1.創(chuàng)建監(jiān)聽(tīng)套接字,綁定,監(jiān)聽(tīng);
2.創(chuàng)建工作者線(xiàn)程;
3.創(chuàng)建一個(gè)套接字?jǐn)?shù)組,用來(lái)存放當(dāng)前所有活動(dòng)的客戶(hù)端套接字,每accept一個(gè)連接就更新一次數(shù)組;
4.接受客戶(hù)端的連接。這里有一點(diǎn)需要注意的,就是我沒(méi)有重新定義FD_SETSIZE宏,所以服務(wù)器最多支持的并發(fā)連接數(shù)為64。而且,這里決不能無(wú)條件的accept,服務(wù)器應(yīng)該根據(jù)當(dāng)前的連接數(shù)來(lái)決定是否接受來(lái)自某個(gè)客戶(hù)端的連接。一種比較好的實(shí)現(xiàn)方案就是采用WSAAccept函數(shù),而且讓W(xué)SAAccept回調(diào)自己實(shí)現(xiàn)的Condition Function。如下所示:

int CALLBACK ConditionFunc(LPWSABUF lpCallerId,LPWSABUF lpCallerData, LPQOS lpSQOS,LPQOS lpGQOS,LPWSABUF lpCalleeId, LPWSABUF lpCalleeData,GROUP FAR * g,DWORD dwCallbackData)
{
if (當(dāng)前連接數(shù) < FD_SETSIZE)
return CF_ACCEPT;
else
return CF_REJECT;
}

工作者線(xiàn)程里面是一個(gè)死循環(huán),一次循環(huán)完成的動(dòng)作是:
1.將當(dāng)前所有的客戶(hù)端套接字加入到讀集fdread中;
2.調(diào)用select函數(shù);
3.查看某個(gè)套接字是否仍然處于讀集中,如果是,則接收數(shù)據(jù)。如果接收的數(shù)據(jù)長(zhǎng)度為0,或者發(fā)生WSAECONNRESET錯(cuò)誤,則表示客戶(hù)端套接字主動(dòng)關(guān)閉,這時(shí)需要將服務(wù)器中對(duì)應(yīng)的套接字所綁定的資源釋放掉,然后調(diào)整我們的套接字?jǐn)?shù)組(將數(shù)組中最后一個(gè)套接字挪到當(dāng)前的位置上)

除了需要有條件接受客戶(hù)端的連接外,還需要在連接數(shù)為0的情形下做特殊處理,因?yàn)槿绻x集中沒(méi)有任何套接字,select函數(shù)會(huì)立刻返回,這將導(dǎo)致工作者線(xiàn)程成為一個(gè)毫無(wú)停頓的死循環(huán),CPU的占用率馬上達(dá)到100%。

二.異步選擇
Winsock提供了一個(gè)有用的異步I/O模型。利用這個(gè)模型,應(yīng)用程序可在一個(gè)套接字上,接收以Windows消息為基礎(chǔ)的網(wǎng)絡(luò)事件通知。具體的做法是在建好一個(gè)套接字后,調(diào)用WSAAsyncSelect函數(shù)。該模型最早出現(xiàn)于Winsock的1.1版本中,用于幫助應(yīng)用程序開(kāi)發(fā)者面向一些早期的16位Windows平臺(tái)(如Windows for Workgroups),適應(yīng)其“落后”的多任務(wù)消息環(huán)境。應(yīng)用程序仍可從這種模型中得到好處,特別是它們用一個(gè)標(biāo)準(zhǔn)的Windows例程(常稱(chēng)為"WndProc"),對(duì)窗口消息進(jìn)行管理的時(shí)候。該模型亦得到了Microsoft Foundation Class(微軟基本類(lèi),MFC)對(duì)象CSocket的采納。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
我還是先貼出代碼,然后做詳細(xì)解釋?zhuān)?br style="line-height: normal; ">#include <winsock.h>
#include <tchar.h>

#define PORT      5150
#define MSGSIZE   1024
#define WM_SOCKET WM_USER+0

#pragma comment(lib, "ws2_32.lib")

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PSTR szCmdLine, int iCmdShow)
{
static TCHAR szAppName[] = _T("AsyncSelect Model");
HWND         hwnd ;
MSG          msg ;
WNDCLASS     wndclass ;

wndclass.style         = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc   = WndProc ;
wndclass.cbClsExtra    = 0 ;
wndclass.cbWndExtra    = 0 ;
wndclass.hInstance     = hInstance ;
wndclass.hIcon         = LoadIcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor       = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szAppName ;

if (!RegisterClass(&wndclass))
{
    MessageBox (NULL, TEXT ("This program requires Windows NT!"), szAppName, MB_ICONERROR) ;
    return 0 ;
}

hwnd = CreateWindow (szAppName,                  // window class name
                       TEXT ("AsyncSelect Model"), // window caption
                       WS_OVERLAPPEDWINDOW,        // window style
                       CW_USEDEFAULT,              // initial x position
                       CW_USEDEFAULT,              // initial y position
                       CW_USEDEFAULT,              // initial x size
                       CW_USEDEFAULT,              // initial y size
                       NULL,                       // parent window handle
                       NULL,                       // window menu handle
                       hInstance,                  // program instance handle
                       NULL) ;                     // creation parameters

ShowWindow(hwnd, iCmdShow);
UpdateWindow(hwnd);

while (GetMessage(&msg, NULL, 0, 0))
{
    TranslateMessage(&msg) ;
    DispatchMessage(&msg) ;
}

return msg.wParam;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
WSADATA       wsd;
static SOCKET sListen;
SOCKET        sClient;
SOCKADDR_IN   local, client;
int           ret, iAddrSize = sizeof(client);
char          szMessage[MSGSIZE];

switch (message)
{
case WM_CREATE:
    // Initialize Windows Socket library
WSAStartup(0x0202, &wsd);

// Create listening socket
    sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
    
// Bind
    local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(local));

// Listen
    listen(sListen, 3);

    // Associate listening socket with FD_ACCEPT event
WSAAsyncSelect(sListen, hwnd, WM_SOCKET, FD_ACCEPT);
return 0;

case WM_DESTROY:
    closesocket(sListen);
    WSACleanup();
    PostQuitMessage(0);
    return 0;

case WM_SOCKET:
    if (WSAGETSELECTERROR(lParam))
    {
      closesocket(wParam);
      break;
    }
    
    switch (WSAGETSELECTEVENT(lParam))
    {
    case FD_ACCEPT:
      // Accept a connection from client
      sClient = accept(wParam, (struct sockaddr *)&client, &iAddrSize);
      
      // Associate client socket with FD_READ and FD_CLOSE event
      WSAAsyncSelect(sClient, hwnd, WM_SOCKET, FD_READ | FD_CLOSE);
      break;

    case FD_READ:
      ret = recv(wParam, szMessage, MSGSIZE, 0);

      if (ret == 0 || ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET)
      {
        closesocket(wParam);
      }
      else
      {
        szMessage[ret] = '\0';
        send(wParam, szMessage, strlen(szMessage), 0);
      }
      break;
      
    case FD_CLOSE:
      closesocket(wParam);      
      break;
    }
    return 0;
}

return DefWindowProc(hwnd, message, wParam, lParam);
}


在我看來(lái),WSAAsyncSelect是最簡(jiǎn)單的一種Winsock I/O模型(之所以說(shuō)它簡(jiǎn)單是因?yàn)橐粋€(gè)主線(xiàn)程就搞定了)。使用Raw Windows API寫(xiě)過(guò)窗口類(lèi)應(yīng)用程序的人應(yīng)該都能看得懂。這里,我們需要做的僅僅是:
1.在WM_CREATE消息處理函數(shù)中,初始化Windows Socket library,創(chuàng)建監(jiān)聽(tīng)套接字,綁定,監(jiān)聽(tīng),并且調(diào)用WSAAsyncSelect函數(shù)表示我們關(guān)心在監(jiān)聽(tīng)套接字上發(fā)生的FD_ACCEPT事件;
2.自定義一個(gè)消息WM_SOCKET,一旦在我們所關(guān)心的套接字(監(jiān)聽(tīng)套接字和客戶(hù)端套接字)上發(fā)生了某個(gè)事件,系統(tǒng)就會(huì)調(diào)用WndProc并且message參數(shù)被設(shè)置為WM_SOCKET;
3.在WM_SOCKET的消息處理函數(shù)中,分別對(duì)FD_ACCEPT、FD_READ和FD_CLOSE事件進(jìn)行處理;
4.在窗口銷(xiāo)毀消息(WM_DESTROY)的處理函數(shù)中,我們關(guān)閉監(jiān)聽(tīng)套接字,清除Windows Socket library

下面這張用于WSAAsyncSelect函數(shù)的網(wǎng)絡(luò)事件類(lèi)型表可以讓你對(duì)各個(gè)網(wǎng)絡(luò)事件有更清楚的認(rèn)識(shí):
表1

FD_READ 應(yīng)用程序想要接收有關(guān)是否可讀的通知,以便讀入數(shù)據(jù) 
FD_WRITE 應(yīng)用程序想要接收有關(guān)是否可寫(xiě)的通知,以便寫(xiě)入數(shù)據(jù) 
FD_OOB 應(yīng)用程序想接收是否有帶外(OOB)數(shù)據(jù)抵達(dá)的通知 
FD_ACCEPT 應(yīng)用程序想接收與進(jìn)入連接有關(guān)的通知 
FD_CONNECT 應(yīng)用程序想接收與一次連接或者多點(diǎn)join操作完成的通知 
FD_CLOSE 應(yīng)用程序想接收與套接字關(guān)閉有關(guān)的通知 
FD_QOS 應(yīng)用程序想接收套接字“服務(wù)質(zhì)量”(QoS)發(fā)生更改的通知 
FD_GROUP_QOS 應(yīng)用程序想接收套接字組“服務(wù)質(zhì)量”發(fā)生更改的通知(現(xiàn)在沒(méi)什么用處,為未來(lái)套接字組的使用保留) 
FD_ROUTING_INTERFACE_CHANGE 應(yīng)用程序想接收在指定的方向上,與路由接口發(fā)生變化的通知 
FD_ADDRESS_LIST_CHANGE 應(yīng)用程序想接收針對(duì)套接字的協(xié)議家族,本地地址列表發(fā)生變化的通知

三.事件選擇
Winsock提供了另一個(gè)有用的異步I/O模型。和WSAAsyncSelect模型類(lèi)似的是,它也允許應(yīng)用程序在一個(gè)或多個(gè)套接字上,接收以事件為基礎(chǔ)的網(wǎng)絡(luò)事件通知。對(duì)于表1總結(jié)的、由WSAAsyncSelect模型采用的網(wǎng)絡(luò)事件來(lái)說(shuō),它們均可原封不動(dòng)地移植到新模型。在用新模型開(kāi)發(fā)的應(yīng)用程序中,也能接收和處理所有那些事件。該模型最主要的差別在于網(wǎng)絡(luò)事件會(huì)投遞至一個(gè)事件對(duì)象句柄,而非投遞至一個(gè)窗口例程。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
還是讓我們先看代碼然后進(jìn)行分析:
#include <winsock2.h>
#include <stdio.h>

#define PORT    5150
#define MSGSIZE 1024

#pragma comment(lib, "ws2_32.lib")

int      g_iTotalConn = 0;
SOCKET   g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];

DWORD WINAPI WorkerThread(LPVOID);
void Cleanup(int index);

int main()
{
WSADATA     wsaData;
SOCKET      sListen, sClient;
SOCKADDR_IN local, client;
DWORD       dwThreadId;
int         iaddrSize = sizeof(SOCKADDR_IN);

// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);

// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));

// Listen
listen(sListen, 3);

// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);

while (TRUE)
{
    // Accept a connection
    sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
    printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));

    // Associate socket with network event
    g_CliSocketArr[g_iTotalConn] = sClient;
    g_CliEventArr[g_iTotalConn] = WSACreateEvent();
    WSAEventSelect(g_CliSocketArr[g_iTotalConn],
                   g_CliEventArr[g_iTotalConn],
                   FD_READ | FD_CLOSE);
    g_iTotalConn++;
}
}

DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int              ret, index;
WSANETWORKEVENTS NetworkEvents;
char             szMessage[MSGSIZE];

while (TRUE)
{
    ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
    if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
    {
      continue;
    }

    index = ret - WSA_WAIT_EVENT_0;
    WSAEnumNetworkEvents(g_CliSocketArr[index], g_CliEventArr[index], &NetworkEvents);

    if (NetworkEvents.lNetworkEvents & FD_READ)
    {
      // Receive message from client
      ret = recv(g_CliSocketArr[index], szMessage, MSGSIZE, 0);
      if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
      {
        Cleanup(index);
      }
      else
      {
        szMessage[ret] = '\0';
        send(g_CliSocketArr[index], szMessage, strlen(szMessage), 0);
      }
    }

    if (NetworkEvents.lNetworkEvents & FD_CLOSE)
{
   Cleanup(index);
}
}
return 0;
}

void Cleanup(int index)
{
closesocket(g_CliSocketArr[index]);
WSACloseEvent(g_CliEventArr[index]);

if (index < g_iTotalConn - 1)
{
g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
}

g_iTotalConn--;
}


事件選擇模型也比較簡(jiǎn)單,實(shí)現(xiàn)起來(lái)也不是太復(fù)雜,它的基本思想是將每個(gè)套接字都和一個(gè)WSAEVENT對(duì)象對(duì)應(yīng)起來(lái),并且在關(guān)聯(lián)的時(shí)候指定需要關(guān)注的哪些網(wǎng)絡(luò)事件。一旦在某個(gè)套接字上發(fā)生了我們關(guān)注的事件(FD_READ和FD_CLOSE),與之相關(guān)聯(lián)的WSAEVENT對(duì)象被Signaled。程序定義了兩個(gè)全局?jǐn)?shù)組,一個(gè)套接字?jǐn)?shù)組,一個(gè)WSAEVENT對(duì)象數(shù)組,其大小都是MAXIMUM_WAIT_OBJECTS(64),兩個(gè)數(shù)組中的元素一一對(duì)應(yīng)。
同樣的,這里的程序沒(méi)有考慮兩個(gè)問(wèn)題,一是不能無(wú)條件的調(diào)用accept,因?yàn)槲覀冎С值牟l(fā)連接數(shù)有限。解決方法是將套接字按MAXIMUM_WAIT_OBJECTS分組,每MAXIMUM_WAIT_OBJECTS個(gè)套接字一組,每一組分配一個(gè)工作者線(xiàn)程;或者采用WSAAccept代替accept,并回調(diào)自己定義的Condition Function。第二個(gè)問(wèn)題是沒(méi)有對(duì)連接數(shù)為0的情形做特殊處理,程序在連接數(shù)為0的時(shí)候CPU占用率為100%。

四.重疊I/O模型
Winsock2的發(fā)布使得Socket I/O有了和文件I/O統(tǒng)一的接口。我們可以通過(guò)使用Win32文件操縱函數(shù)ReadFile和WriteFile來(lái)進(jìn)行Socket I/O。伴隨而來(lái)的,用于普通文件I/O的重疊I/O模型和完成端口模型對(duì)Socket I/O也適用了。這些模型的優(yōu)點(diǎn)是可以達(dá)到更佳的系統(tǒng)性能,但是實(shí)現(xiàn)較為復(fù)雜,里面涉及較多的C語(yǔ)言技巧。例如我們?cè)谕瓿啥丝谀P椭袝?huì)經(jīng)常用到所謂的“尾隨數(shù)據(jù)”。

1.用事件通知方式實(shí)現(xiàn)的重疊I/O模型
#include <winsock2.h>
#include <stdio.h>

#define PORT    5150
#define MSGSIZE 1024

#pragma comment(lib, "ws2_32.lib")

typedef struct
{
WSAOVERLAPPED overlap;
WSABUF        Buffer;
char          szMessage[MSGSIZE];
DWORD         NumberOfBytesRecvd;
DWORD         Flags;
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;

int                     g_iTotalConn = 0;
SOCKET                  g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
WSAEVENT                g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
LPPER_IO_OPERATION_DATA g_pPerIODataArr[MAXIMUM_WAIT_OBJECTS];

DWORD WINAPI WorkerThread(LPVOID);
void Cleanup(int);

int main()
{
WSADATA     wsaData;
SOCKET      sListen, sClient;
SOCKADDR_IN local, client;
DWORD       dwThreadId;
int         iaddrSize = sizeof(SOCKADDR_IN);

// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);

// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));

// Listen
listen(sListen, 3);

// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);

while (TRUE)
{
    // Accept a connection
    sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
    printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));

    g_CliSocketArr[g_iTotalConn] = sClient;
    
    // Allocate a PER_IO_OPERATION_DATA structure
    g_pPerIODataArr[g_iTotalConn] = (LPPER_IO_OPERATION_DATA)HeapAlloc(
      GetProcessHeap(),
      HEAP_ZERO_MEMORY,
      sizeof(PER_IO_OPERATION_DATA));
    g_pPerIODataArr[g_iTotalConn]->Buffer.len = MSGSIZE;
    g_pPerIODataArr[g_iTotalConn]->Buffer.buf = g_pPerIODataArr[g_iTotalConn]->szMessage;
    g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent = WSACreateEvent();

    // Launch an asynchronous operation
    WSARecv(
      g_CliSocketArr[g_iTotalConn],
      &g_pPerIODataArr[g_iTotalConn]->Buffer,
      1,
      &g_pPerIODataArr[g_iTotalConn]->NumberOfBytesRecvd,
      &g_pPerIODataArr[g_iTotalConn]->Flags,
      &g_pPerIODataArr[g_iTotalConn]->overlap,
      NULL);
    
    g_iTotalConn++;
}

closesocket(sListen);
WSACleanup();
return 0;
}

DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int   ret, index;
DWORD cbTransferred;

while (TRUE)
{
    ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
    if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
    {
      continue;
    }

    index = ret - WSA_WAIT_EVENT_0;
    WSAResetEvent(g_CliEventArr[index]);

    WSAGetOverlappedResult(
      g_CliSocketArr[index],
      &g_pPerIODataArr[index]->overlap,
      &cbTransferred,
      TRUE,
      &g_pPerIODataArr[g_iTotalConn]->Flags);

    if (cbTransferred == 0)
    {
      // The connection was closed by client
      Cleanup(index);
    }
    else
    {
      // g_pPerIODataArr[index]->szMessage contains the received data
      g_pPerIODataArr[index]->szMessage[cbTransferred] = '\0';
      send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,\
        cbTransferred, 0);

      // Launch another asynchronous operation
      WSARecv(
        g_CliSocketArr[index],
        &g_pPerIODataArr[index]->Buffer,
        1,
        &g_pPerIODataArr[index]->NumberOfBytesRecvd,
        &g_pPerIODataArr[index]->Flags,
        &g_pPerIODataArr[index]->overlap,
        NULL);
    }
}

return 0;
}

void Cleanup(int index)
{
closesocket(g_CliSocketArr[index]);
WSACloseEvent(g_CliEventArr[index]);
HeapFree(GetProcessHeap(), 0, g_pPerIODataArr[index]);

if (index < g_iTotalConn - 1)
{
    g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
    g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
    g_pPerIODataArr[index] = g_pPerIODataArr[g_iTotalConn - 1];
}

g_pPerIODataArr[--g_iTotalConn] = NULL;
}


這個(gè)模型與上述其他模型不同的是它使用Winsock2提供的異步I/O函數(shù)WSARecv。在調(diào)用WSARecv時(shí),指定一個(gè)WSAOVERLAPPED結(jié)構(gòu),這個(gè)調(diào)用不是阻塞的,也就是說(shuō),它會(huì)立刻返回。一旦有數(shù)據(jù)到達(dá)的時(shí)候,被指定的WSAOVERLAPPED結(jié)構(gòu)中的hEvent被Signaled。由于下面這個(gè)語(yǔ)句
g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent;
使得與該套接字相關(guān)聯(lián)的WSAEVENT對(duì)象也被Signaled,所以WSAWaitForMultipleEvents的調(diào)用操作成功返回。我們現(xiàn)在應(yīng)該做的就是用與調(diào)用WSARecv相同的WSAOVERLAPPED結(jié)構(gòu)為參數(shù)調(diào)用WSAGetOverlappedResult,從而得到本次I/O傳送的字節(jié)數(shù)等相關(guān)信息。在取得接收的數(shù)據(jù)后,把數(shù)據(jù)原封不動(dòng)的發(fā)送到客戶(hù)端,然后重新激活一個(gè)WSARecv異步操作。