• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj2585

            Window Pains

            Time Limit: 1000MS Memory Limit: 65536K
            Total Submissions: 1090 Accepted: 540

            Description

            Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:
            1 1 . .
            1 1 . .
            . . . .
            . . . .
            . 2 2 .
            . 2 2 .
            . . . .
            . . . .
            . . 3 3
            . . 3 3
            . . . .
            . . . .
            . . . .
            4 4 . .
            4 4 . .
            . . . .
            . . . .
            . 5 5 .
            . 5 5 .
            . . . .
            . . . .
            . . 6 6
            . . 6 6
            . . . .
            . . . .
            . . . .
            7 7 . .
            7 7 . .
            . . . .
            . . . .
            . 8 8 .
            . 8 8 .
            . . . .
            . . . .
            . . 9 9
            . . 9 9
            When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:
            1 2 2 ?
            1 2 2 ?
            ? ? ? ?
            ? ? ? ?
            If window 4 were then brought to the foreground:
            1 2 2 ?
            4 4 2 ?
            4 4 ? ?
            ? ? ? ?
            . . . and so on . . .
            Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

            Input

            Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

            A single data set has 3 components:
            1. Start line - A single line:
              START

            2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
            3. End line - A single line:
              END

            After the last data set, there will be a single line:
            ENDOFINPUT

            Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

            Output

            For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

            THESE WINDOWS ARE CLEAN

            Otherwise, the output will be a single line with the statement:
            THESE WINDOWS ARE BROKEN

            Sample Input

            START
            1 2 3 3
            4 5 6 6
            7 8 9 9
            7 8 9 9
            END
            START
            1 1 3 3
            4 1 3 3
            7 7 9 9
            7 7 9 9
            END
            ENDOFINPUT
            
            

            Sample Output

            THESE WINDOWS ARE CLEAN
            THESE WINDOWS ARE BROKEN
            
            圖論的好題
            把模型建為網絡,然后判斷是否為AOV網
            如何構圖
            預處理要先計算出4*4格的位置可能填放的窗口
            讀取快照后,對每一點處理如下
            該點當前的窗口為k,對該點可能出現窗口i,標記g[k][i]有邊
            正常的話,不會出現環
            這里判斷AOV網用點的入度計算
            如果存在超過未刪除的點的入度全部大于0,說明存在環
            #include<algorithm>
            #include
            <iostream>
            #include
            <cstring>
            #include
            <string>
            #include
            <cstdio>
            using namespace std;
            string cover[4][4];
            bool exist[10];//第i個窗口是否在快照中出現
            int id[10];//入度
            bool g[10][10];
            int t;//頂點數
            int n=4;
            int a[4][4];
            void getweizhi()
            {
                
            int i,j,k;
                
            for(i=0;i<n;i++)
                
            {
                    
            for(j=0;j<n;j++)
                        cover[i][j].erase();
                }

                
            for(k=1;k<=9;k++)
                
            {
                    i
            =(k-1)/3;
                    j
            =(k-1)%3;
                    cover[i][j]
            +=char(k+'0');
                    cover[i][j
            +1]+=char(k+'0');
                    cover[i
            +1][j]+=char(k+'0');
                    cover[i
            +1][j+1]+=char(k+'0');
                }

            }

            void init()
            {
                
            int i,j,k;
                memset(g,
            0,sizeof(g));
                memset(exist,
            false,sizeof(exist));
                memset(id,
            0,sizeof(id));
                t
            =0;
                
            for(i=0;i<4;i++)
                
            {
                    
            for(j=0;j<4;j++)
                    
            {
                        cin
            >>k;
                        a[i][j]
            =k;
                        
            if (!exist[k])
                        
            {
                            t
            ++;
                            exist[k]
            =true;
                        }

                    }

                }

            }

            void build()
            {
                
            int i,j,p;
                
            for(i=0;i<n;i++)
                
            for(j=0;j<n;j++)
                
            {
                    
            for(p=0;p<=cover[i][j].length()-1;p++)
                        
            if (cover[i][j][p]-'0'!=a[i][j]&&!(g[a[i][j]][cover[i][j][p]-'0']))
                        
            {
                            g[a[i][j]][cover[i][j][p]
            -'0']=true;
                            id[cover[i][j][p]
            -'0']++;
                        }

                }

            }

            bool check()
            {
                
            int i,j,k;
                
            for(k=0;k<t;k++)
                
            {
                    i
            =1;
                    
            while(!exist[i]||(i<=9&&id[i]>0)) i++;
                    
            if (i>9)//剩余的點中每個點入度都超過0
                    {
                        
            return false;
                    }

                    exist[i]
            =false;
                    
            for(j=1;j<=9;j++)
                        
            if (exist[j]&&g[i][j]) id[j]--;
                }

                
            return true;
            }

            int main()
            {
                
            string tmp;
                getweizhi();
                
            while(cin>>tmp)
                
            {
                    
            if (tmp=="ENDOFINPUT")
                    
            {
                        
            break;
                    }

                    init();
                    build();
                    
            if (check())
                        cout
            <<"THESE WINDOWS ARE CLEAN"<<endl;
                    
            else
                        cout
            <<"THESE WINDOWS ARE BROKEN"<<endl;
                    cin
            >>tmp;
                }

                
            return 0;
            }

            posted on 2012-04-02 22:56 jh818012 閱讀(141) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            久久综合久久美利坚合众国| 久久99精品国产99久久| 狠狠久久综合| 婷婷久久精品国产| 久久久精品人妻一区二区三区蜜桃 | 久久精品国产第一区二区三区| 久久国产精品99精品国产| 国产叼嘿久久精品久久| 久久久久亚洲av无码专区| 亚洲国产精品久久久久婷婷老年| 亚洲国产精品无码久久| 久久综合九色综合久99| 久久九九全国免费| 99久久中文字幕| 久久午夜无码鲁丝片| 一本大道久久香蕉成人网| 久久精品国产亚洲精品| 久久se精品一区二区影院 | 香港aa三级久久三级| 久久精品国产亚洲αv忘忧草| 久久久久久国产a免费观看不卡| 18岁日韩内射颜射午夜久久成人| 久久一区二区三区免费| 精品免费久久久久久久| 国产精品久久午夜夜伦鲁鲁| 午夜精品久久影院蜜桃| 国产巨作麻豆欧美亚洲综合久久| 久久精品国产亚洲AV麻豆网站| 一本色道久久88综合日韩精品| 久久国产精品一区| 国内精品伊人久久久久网站| 久久精品人成免费| 国产麻豆精品久久一二三| 久久午夜伦鲁片免费无码| 一本久久a久久精品亚洲| 伊人 久久 精品| 久久亚洲精品无码VA大香大香| 日韩十八禁一区二区久久| 很黄很污的网站久久mimi色| 国内精品伊人久久久久网站| 久久久精品日本一区二区三区|