• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj2585

            Window Pains

            Time Limit: 1000MS Memory Limit: 65536K
            Total Submissions: 1090 Accepted: 540

            Description

            Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:
            1 1 . .
            1 1 . .
            . . . .
            . . . .
            . 2 2 .
            . 2 2 .
            . . . .
            . . . .
            . . 3 3
            . . 3 3
            . . . .
            . . . .
            . . . .
            4 4 . .
            4 4 . .
            . . . .
            . . . .
            . 5 5 .
            . 5 5 .
            . . . .
            . . . .
            . . 6 6
            . . 6 6
            . . . .
            . . . .
            . . . .
            7 7 . .
            7 7 . .
            . . . .
            . . . .
            . 8 8 .
            . 8 8 .
            . . . .
            . . . .
            . . 9 9
            . . 9 9
            When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:
            1 2 2 ?
            1 2 2 ?
            ? ? ? ?
            ? ? ? ?
            If window 4 were then brought to the foreground:
            1 2 2 ?
            4 4 2 ?
            4 4 ? ?
            ? ? ? ?
            . . . and so on . . .
            Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

            Input

            Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

            A single data set has 3 components:
            1. Start line - A single line:
              START

            2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
            3. End line - A single line:
              END

            After the last data set, there will be a single line:
            ENDOFINPUT

            Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

            Output

            For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

            THESE WINDOWS ARE CLEAN

            Otherwise, the output will be a single line with the statement:
            THESE WINDOWS ARE BROKEN

            Sample Input

            START
            1 2 3 3
            4 5 6 6
            7 8 9 9
            7 8 9 9
            END
            START
            1 1 3 3
            4 1 3 3
            7 7 9 9
            7 7 9 9
            END
            ENDOFINPUT
            
            

            Sample Output

            THESE WINDOWS ARE CLEAN
            THESE WINDOWS ARE BROKEN
            
            圖論的好題
            把模型建為網(wǎng)絡(luò),然后判斷是否為AOV網(wǎng)
            如何構(gòu)圖
            預(yù)處理要先計算出4*4格的位置可能填放的窗口
            讀取快照后,對每一點處理如下
            該點當前的窗口為k,對該點可能出現(xiàn)窗口i,標記g[k][i]有邊
            正常的話,不會出現(xiàn)環(huán)
            這里判斷AOV網(wǎng)用點的入度計算
            如果存在超過未刪除的點的入度全部大于0,說明存在環(huán)
            #include<algorithm>
            #include
            <iostream>
            #include
            <cstring>
            #include
            <string>
            #include
            <cstdio>
            using namespace std;
            string cover[4][4];
            bool exist[10];//第i個窗口是否在快照中出現(xiàn)
            int id[10];//入度
            bool g[10][10];
            int t;//頂點數(shù)
            int n=4;
            int a[4][4];
            void getweizhi()
            {
                
            int i,j,k;
                
            for(i=0;i<n;i++)
                
            {
                    
            for(j=0;j<n;j++)
                        cover[i][j].erase();
                }

                
            for(k=1;k<=9;k++)
                
            {
                    i
            =(k-1)/3;
                    j
            =(k-1)%3;
                    cover[i][j]
            +=char(k+'0');
                    cover[i][j
            +1]+=char(k+'0');
                    cover[i
            +1][j]+=char(k+'0');
                    cover[i
            +1][j+1]+=char(k+'0');
                }

            }

            void init()
            {
                
            int i,j,k;
                memset(g,
            0,sizeof(g));
                memset(exist,
            false,sizeof(exist));
                memset(id,
            0,sizeof(id));
                t
            =0;
                
            for(i=0;i<4;i++)
                
            {
                    
            for(j=0;j<4;j++)
                    
            {
                        cin
            >>k;
                        a[i][j]
            =k;
                        
            if (!exist[k])
                        
            {
                            t
            ++;
                            exist[k]
            =true;
                        }

                    }

                }

            }

            void build()
            {
                
            int i,j,p;
                
            for(i=0;i<n;i++)
                
            for(j=0;j<n;j++)
                
            {
                    
            for(p=0;p<=cover[i][j].length()-1;p++)
                        
            if (cover[i][j][p]-'0'!=a[i][j]&&!(g[a[i][j]][cover[i][j][p]-'0']))
                        
            {
                            g[a[i][j]][cover[i][j][p]
            -'0']=true;
                            id[cover[i][j][p]
            -'0']++;
                        }

                }

            }

            bool check()
            {
                
            int i,j,k;
                
            for(k=0;k<t;k++)
                
            {
                    i
            =1;
                    
            while(!exist[i]||(i<=9&&id[i]>0)) i++;
                    
            if (i>9)//剩余的點中每個點入度都超過0
                    {
                        
            return false;
                    }

                    exist[i]
            =false;
                    
            for(j=1;j<=9;j++)
                        
            if (exist[j]&&g[i][j]) id[j]--;
                }

                
            return true;
            }

            int main()
            {
                
            string tmp;
                getweizhi();
                
            while(cin>>tmp)
                
            {
                    
            if (tmp=="ENDOFINPUT")
                    
            {
                        
            break;
                    }

                    init();
                    build();
                    
            if (check())
                        cout
            <<"THESE WINDOWS ARE CLEAN"<<endl;
                    
            else
                        cout
            <<"THESE WINDOWS ARE BROKEN"<<endl;
                    cin
            >>tmp;
                }

                
            return 0;
            }

            posted on 2012-04-02 22:56 jh818012 閱讀(142) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標題查看
            • --王私江
            久久99久久99小草精品免视看 | 一本久久a久久精品亚洲| 午夜福利91久久福利| 99久久香蕉国产线看观香| 精品熟女少妇AV免费久久 | 色综合合久久天天给综看| 少妇熟女久久综合网色欲| 久久亚洲AV成人无码电影| 久久精品无码一区二区三区日韩| 久久只有这精品99| 777久久精品一区二区三区无码| 久久中文字幕人妻丝袜| 日韩一区二区久久久久久| 国内高清久久久久久| 国产高潮国产高潮久久久91 | 久久水蜜桃亚洲av无码精品麻豆| 国产高潮久久免费观看| 精品国际久久久久999波多野| 亚洲精品tv久久久久久久久久| 国产V亚洲V天堂无码久久久| 久久精品国产亚洲αv忘忧草| 国产一区二区精品久久岳| 久久久无码精品亚洲日韩按摩| 色婷婷久久久SWAG精品| 久久国产免费直播| 精品久久一区二区三区| 久久精品人人做人人爽电影蜜月 | 99久久99久久精品国产片| 亚洲中文久久精品无码| 久久天天躁狠狠躁夜夜2020一| 久久久久国产一区二区三区| 99久久99久久精品国产片| 日本精品久久久久中文字幕| 久久亚洲国产午夜精品理论片| 精品久久久久中文字幕日本| 日韩av无码久久精品免费| 无码人妻久久一区二区三区免费 | 合区精品久久久中文字幕一区| 久久综合狠狠色综合伊人| 亚洲午夜久久久精品影院| 2021国产成人精品久久|