• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1459

            Power Network

            Time Limit: 2000MS Memory Limit: 32768K
            Total Submissions: 16422 Accepted: 8712

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
                     (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
                     (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.


            哎,糾結(jié)死了,我對網(wǎng)絡(luò)流這方面理解的還不行

            如果自己寫代碼的話還是有點難度,所以找個好的模版還是很重要的

            額,模版也比較糾結(jié),好多中算法

            找了個比較簡單的算法 Edmonds_karp 

            時間復(fù)雜度為O(V*E^2)

            Edmonds-Karp算法就是利用寬度優(yōu)先不斷地找一條從s到t的可改進路,然后改進流量,一直到找不到可改進路為止。

            由于用寬度優(yōu)先,每次找到的可改進路是最短的可改進路,通過分析可以知道其復(fù)雜度為O(VE^2)。

            代碼好丑
              1#include<stdio.h>
              2#include<string.h>
              3#include<math.h>
              4#define MAX 105
              5int map[MAX][MAX],flow[MAX][MAX],c[MAX][MAX];
              6int n,nc,np,nt,s,t;
              7int sum;
              8int min(int a,int b)
              9{
             10    if (a<b) return a;else return b;
             11}

             12void Edmonds_Karp()
             13{
             14    int l1[MAX],l2[MAX],q[MAX];
             15    int u,v,head,tail;
             16    do 
             17    {
             18        memset(l1,0,sizeof(l1));
             19        memset(l2,0,sizeof(l2));//初始化所有標(biāo)號為0
             20        l1[s]=0;l2[s]=0x7fffffff;
             21        head=0;tail=1;
             22        q[tail]=s;
             23        while (head<tail&&l2[t]==0)//q未空且匯點未標(biāo)號
             24        {
             25            head++;
             26            u=q[head];
             27            for (v=1;v<=n ;v++ )
             28            {
             29                if (flow[u][v]<c[u][v]&&l2[v]==0)//未標(biāo)號且有可行流
             30                {
             31                    tail++;
             32                    q[tail]=v;
             33                    l2[v]=min(c[u][v]-flow[u][v],l2[u]);
             34                    //l2[v]記錄s到v增廣路中最小的可改進流
             35                    l1[v]=u;//記錄前驅(qū)
             36                }

             37            }

             38        }

             39        if (l2[t]>0)//匯點未標(biāo)號
             40        {
             41            v=t;
             42            u=l1[v];
             43            while (v!=s)
             44            {
             45                flow[u][v]+=l2[t];
             46                flow[v][u]=-flow[u][v];
             47                v=u;
             48                u=l1[v];
             49            }

             50        }

             51    }

             52    while (l2[t]!=0);//直到匯點未標(biāo)號
             53}

             54void init()
             55{
             56    int i,j,a,b,w,x;
             57    char ch1;
             58    s=1;t=n+2;
             59    memset(map,0,sizeof(map));
             60    for (i=1;i<=nt ;i++ )
             61    {
             62        scanf("%c",&ch1);
             63        while (ch1!='(')
             64        {
             65            scanf("%c",&ch1);
             66        }

             67        scanf("%d",&a);a=a+2;
             68        scanf("%c",&ch1);scanf("%d",&b);b=b+2;
             69        scanf("%c",&ch1);scanf("%d",&w);
             70        map[a][b]=w;
             71    }

             72    for (i=1;i<=np ;i++ )
             73    {
             74        scanf("%c",&ch1);
             75        while (ch1!='(')
             76        {
             77            scanf("%c",&ch1);
             78        }

             79        scanf("%d",&a);a=a+2;
             80        scanf("%c",&ch1);scanf("%d",&w);
             81        map[s][a]=w;//map[a][s]=-w;
             82    }

             83    for (i=1;i<=nc ;i++ )
             84    {
             85        scanf("%c",&ch1);
             86        while (ch1!='(')
             87        {
             88            scanf("%c",&ch1);
             89        }

             90        scanf("%d",&a);a=a+2;
             91        scanf("%c",&ch1);scanf("%d",&w);
             92        map[a][t]=w;//map[t][a]=-w;
             93    }

             94    n=n+2;
             95    /*/for (i=1;i<=n ;i++ )
             96    {
             97        for (j=1;j<=n;j++ )
             98        {
             99            printf("%d ",map[i][j]);
            100        }
            101        printf("\n");
            102    }*/

            103    for (i=1;i<=n ;i++ )
            104    {
            105        for (j=1;j<=n;j++ )
            106        {
            107            c[i][j]=map[i][j];
            108        }

            109    }

            110}

            111int main()
            112{
            113    int i;
            114    while (scanf("%d%d%d%d",&n,&np,&nc,&nt)!=EOF)
            115    {
            116        memset(flow,0,sizeof(flow));
            117        init();
            118        Edmonds_Karp(1,n);
            119        sum=0;
            120        for (i=1;i<=n;i++ )
            121        {
            122            sum+=flow[1][i];
            123        }

            124        printf("%d\n",sum);
            125    }

            126    return 0;
            127}

            128



            posted on 2012-02-23 17:34 jh818012 閱讀(130) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當(dāng)于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標(biāo)題查看
            • --王私江
            国内精品综合久久久40p| 久久精品国产亚洲网站| www.久久热| 国产一久久香蕉国产线看观看| 欧美亚洲另类久久综合婷婷| 国产L精品国产亚洲区久久| 国产V综合V亚洲欧美久久| 久久91精品久久91综合| 欧美熟妇另类久久久久久不卡 | 久久久亚洲精品蜜桃臀| 精品久久久久久无码中文字幕| 合区精品久久久中文字幕一区| 久久久99精品成人片中文字幕 | 亚洲精品美女久久久久99| 亚洲国产精品高清久久久| 久久精品国产99国产精品亚洲| 国产欧美久久一区二区| 好久久免费视频高清| 色成年激情久久综合| 偷偷做久久久久网站| 99久久精品国产麻豆| 婷婷久久综合九色综合98| 久久国产精品二国产精品| 久久久久久久综合日本| 2020国产成人久久精品| 欧美熟妇另类久久久久久不卡 | 久久久久一区二区三区| 精品久久久久久久久久中文字幕| 欧美国产精品久久高清| 久久精品国产亚洲AV香蕉| 久久99精品国产自在现线小黄鸭 | 久久夜色精品国产亚洲av| 少妇被又大又粗又爽毛片久久黑人| 欧美亚洲另类久久综合婷婷| 色婷婷综合久久久中文字幕| 一本伊大人香蕉久久网手机| 性高湖久久久久久久久AAAAA| 97精品伊人久久大香线蕉app| 久久午夜综合久久| 国内精品伊人久久久久| 日韩欧美亚洲综合久久 |