• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            asm, c, c++ are my all
            -- Core In Computer
            posts - 139,  comments - 123,  trackbacks - 0

            /********************************************\
            |????歡迎轉載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
            \********************************************/


            C++對象模型(13) - 3.5 Object Member Efficiency
            作者: Jerry Cat
            時間: 2006/11/17
            鏈接:?
            http://www.shnenglu.com/jerysun0818/archive/2006/11/17/15311.html


            3.5 Object Member Efficiency
            ;-----------------------------------------------------------------------

            An obvious observation is that without the optimizer turned on, it is extremely difficult to guess at the performance characteristics of a program, since the code is potentially hostage to the "quirk(s) of code generation…unique to a particular compiler." Before one begins source level "optimizations" to speed up a program, one should always do actual performance measurements rather than relying on speculation and common sense.不要想當然, 要試驗之.

            In the next sequence of tests, I introduced first a three-level single inheritance representation of the Point abstraction and then a virtual inheritance representation of the Point abstraction. I tested both direct and inline access (multiple inheritance did not fit naturally into the model, so I decided to forego it.) The general hierarchy is

            class Point1d {...};?????????????????????????? // maintains x
            class Point2d : public Point1d {...};???? // maintains y
            class Point3d : public Point2d {...};???? // maintains z

            The one-level virtual inheritance derived Point2d virtually from Point1d. The two-level virtual inheritance additionally derived Point3d virtually from Point2d. Table 3.2 lists the results of running the tests for both compilers. (Again, I break out the times for the two compilers only when their performances differ significantly from each other's.)

            Table 3.2. Data Access under Inheritance Models

            ???????????????????????????????????? Optimized?????? Non-optimized
            Single Inheritance
            ???? Direct Access?????????? 0.80???????????????? 1.42
            ???? Inline Methods
            ???? CC???????????????????????????0.80??????????????? 2.55
            ???? NCC????????????????????????0.80??????????????? 3.10
            ?
            Virtual Inheritance — 1-Level
            ???? Direct Access??????????? 1.60????????????? 1.94
            ???? Inline Methods
            ???? CC????????????????????????????1.60????????????? 2.75
            ???? NCC?????????????????????????1.60????????????? 3.30
            ?
            Virtual Inheritance — 2-Level
            ???? Direct Access
            ???? CC????????????????????????????2.25????????????? 2.74
            ??? ?NCC?????????????????????????3.04????????????? 3.68
            ?
            ??? Inline Methods
            ???? CC????????????????????????????2.25????????????? 3.22
            ???? NCC?????????????????????????2.50????????????? 3.81
            ?
            Single inheritance should not affect the test performance, since the members are stored contiguously within the derived class object and their offsets are known at compile time. The results, as expected, were exactly the same as those of the independent abstract data type. (The same should be true under multiple inheritance, but I didn't confirm that.)

            Again, it is worth noting that with the optimizer off, performance, which common sense says should be the same (direct member access versus inline access), is in practice slower in the case of inline functions. The lesson again is that the programmer concerned with efficiency must actually measure the performance of his or her program and not leave the measurement of the program to speculation and assumption. It is also worth noting that optimizers don't always work. I've more than once had compilations fail with an optimizer turned on that compiled fine "normally."別想當然, 實驗之! 編譯時盡可能打開優化開關.

            The virtual inheritance performance is disappointing in that neither compiler recognized that the access of the inherited data member pt1d::_x is through a nonpolymorphic class object and that therefore indirect runtime access is unnecessary. Both compilers generate indirect access of pt1d::_x (and pt1d::y in the case of two levels of virtual inheritance), even though its location within the two Point3d objects is fixed at compile time. The indirection significantly inhibited the optimizer's ability to move all the operations within registers. The indirection did not affect the non-optimized executables significantly.
            虛繼承導致性能大降, 即使打開優化開關也沒太大起色.

            posted on 2006-11-17 18:11 Jerry Cat 閱讀(731) 評論(0)  編輯 收藏 引用

            <2006年7月>
            2526272829301
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            常用鏈接

            留言簿(7)

            隨筆檔案

            最新隨筆

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品二区| 国产精品一区二区久久精品| 久久久久综合中文字幕| 久久精品国产男包| 久久久WWW免费人成精品| 久久久久久久综合日本| 一本大道久久东京热无码AV| 国产精品美女久久久久久2018| 久久久久久国产精品无码下载| 人妻无码久久精品| 国产精品久久影院| 三级韩国一区久久二区综合| 久久久国产打桩机| 精品人妻伦一二三区久久| 一本大道加勒比久久综合| 国产午夜福利精品久久2021| 精品久久久久中文字| MM131亚洲国产美女久久| 久久久久久午夜精品| 久久天天躁狠狠躁夜夜2020一| 久久国产精品无码HDAV| 99久久精品国产麻豆| 亚洲婷婷国产精品电影人久久| 久久er热视频在这里精品| 亚洲AV无码一区东京热久久| 精品无码久久久久久午夜| 亚洲国产成人久久笫一页| 国产99久久久久久免费看| 国产精品久久久久久久久久免费| 热99RE久久精品这里都是精品免费 | 香蕉久久久久久狠狠色| 777久久精品一区二区三区无码| 亚洲午夜无码久久久久| 国内精品久久久人妻中文字幕| 国产成人精品综合久久久久 | 国产高清国内精品福利99久久| 无码国内精品久久人妻蜜桃| 奇米影视7777久久精品人人爽| 亚洲国产精品综合久久一线| 中文精品99久久国产 | 久久人人爽人人爽人人片AV高清 |